Thermal Processes – 2019 June

1. 0625/33/M/J/19/No.6

Fig. 6.1 shows a metal pan containing water being heated by an electrical heater.

Fig. 6.1

- (a) Complete the sentences to describe how thermal energy is transferred.
- (b) A student carries out an experiment to determine which surface is the better emitter of thermal energy. She uses two similar metal containers. One of the containers has a dull black surface. The other has a shiny white surface. Fig. 6.2 shows the metal containers on a bench.
 - (i) Suggest a procedure for her experiment. You may add to Fig. 6.2 to assist with your explanation.

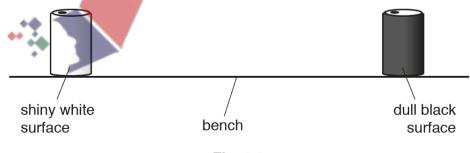


Fig. 6.2

[1]	
[Total: 7]	

2. 0625/43/M/J/19/No.5

Fig. 5.1 shows a cross-section of the inside of a vacuum flask containing a cold liquid. The walls of the vacuum flask are made of glass.

(ii) Predict the result of the experiment described in (b)(i).

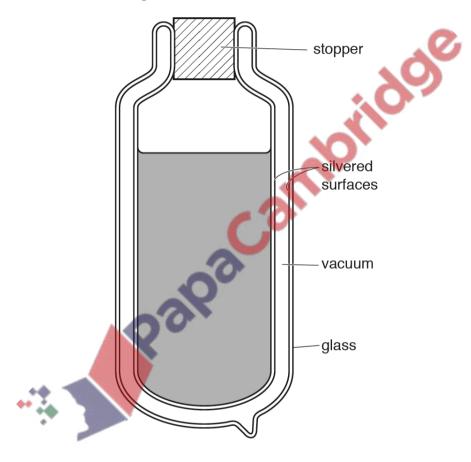


Fig. 5.1

(a)	The vacuum flask is being used to keep a liquid cool on a hot day.
	Explain how the labelled features of the vacuum flask keep the liquid cool by reducing therma energy transfer. Include the names of the processes involved.
	[5]
(b)	Suggest a suitable material for the stopper.
	[1]
	[Total: 6]

	metal casing	
	glass front heating element	
	Fig. 6.1	
The	e heater is switched on.	
The (i)	On Fig. 6.1, draw two arrows to show how thermal energy moves throughout the overconvection.	
	On Fig. 6.1, draw two arrows to show how thermal energy moves throughout the over	[2
(i)	On Fig. 6.1, draw two arrows to show how thermal energy moves throughout the overconvection. Explain how thermal energy moves throughout the oven by convection. Use your in	[2
(i)	On Fig. 6.1, draw two arrows to show how thermal energy moves throughout the overconvection. Explain how thermal energy moves throughout the oven by convection. Use your in	idea
(i)	On Fig. 6.1, draw two arrows to show how thermal energy moves throughout the overconvection. Explain how thermal energy moves throughout the oven by convection. Use your is about density and expansion.	[; idea
(i)	On Fig. 6.1, draw two arrows to show how thermal energy moves throughout the over convection. Explain how thermal energy moves throughout the oven by convection. Use your is about density and expansion.	[: idea

(b) The oven is in a kitchen that is fitted with a smoke detector.

Suggest the best position for the smoke detector in the kitchen.

Warm, moving air can carry smoke particles.