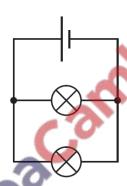
Electricity - 2019 Nov

1. 0625/11/O/N/19/No.30

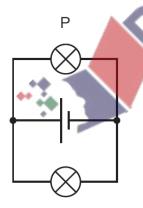
A teacher asks her class "What quantity can be recorded in volts?".

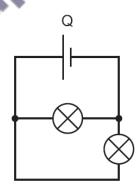
Student 1 says "The potential difference across a resistor".

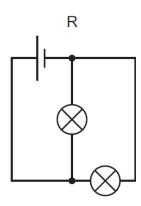
Student 2 says "The rating of a fuse".


Student 3 says "The electromotive force of a battery".

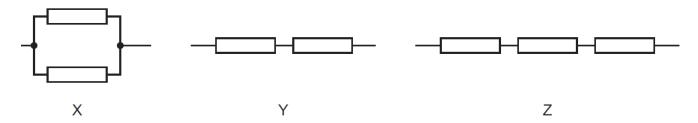
Which students are correct?


- 1 only
- **B** 1 and 2
- 1 and 3
- 2 and 3


2. 0625/11/O/N/19/No.31


The circuit shows two lamps connected to a d.c. supply.

The same lamps and power supply are arranged in different ways, as shown.



In which circuits will the lamps be the same brightness as in the original circuit?

- A Q only
- P and Q only C
- P and R only **D** P, Q and R

3. 0625/11,12,13.21,22,23/O/N/19/No.32,30,29

Identical resistors are connected together to form arrangements X, Y and Z.

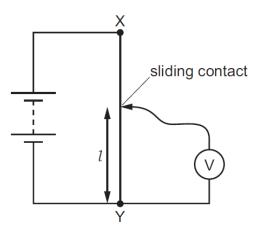
What is the correct order of the resistances of the arrangements from the largest to the smallest?

hildde

- $\textbf{A} \quad X \to Y \to Z$
- **B** $Y \rightarrow X \rightarrow Z$
- $\textbf{C} \quad Z \to X \to Y$
- $\textbf{D} \quad Z \to Y \to X$

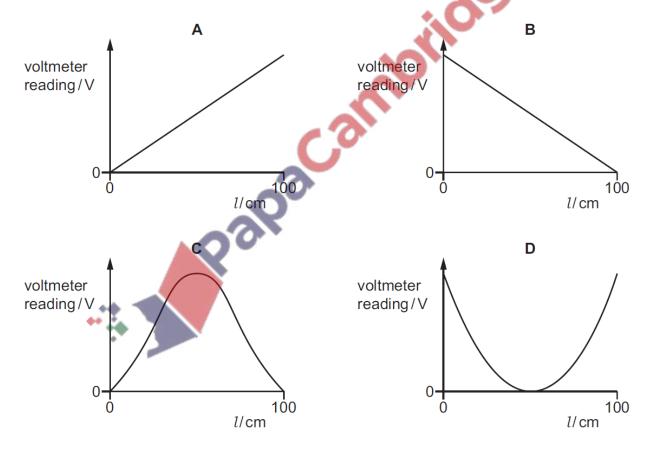
Where must a fuse be connected in a mains electric circuit?

- **A** the earth wire only
- **B** the live wire only
- **C** the neutral wire only
- **D** the live wire and the earth wire


5. 0625/12/O/N/19/No.30

Which quantity has the same unit as potential difference (p.d.)?

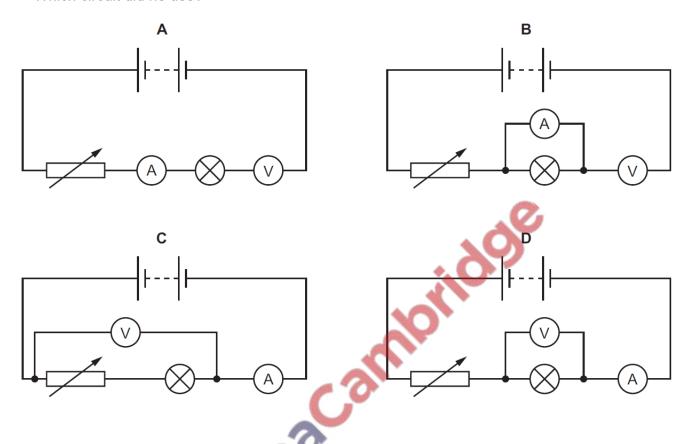
- **A** current
- **B** electromotive force (e.m.f.)
- **C** resistance
- D moment of a force


6. 0625/11/O/N/19/No.33

A student uses 100 cm of resistance wire XY in a circuit to make a potential divider.

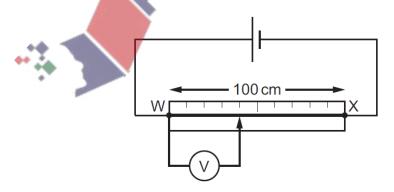
He changes the length of wire l by moving the sliding contact along the resistance wire.

Which graph shows how the voltmeter reading changes as the length of wire l is increased from zero to 100 cm?



7. 0625/12/O/N/19/No.31

A student determines the resistance of an electric lamp.


He measures the current in the lamp and the potential difference (p.d.) across it.

Which circuit did he use?

8. 0625/12/O/N/19/No.33

The circuit shows a wire WX connected to a cell.

The potential difference (p.d.) between W and X is 1.5 V.

What is the reading on the voltmeter?

- **A** 0.4 V
- **B** 0.6 V
- **C** 0.9 V
- **D** 4.0 V

9. 0625/12/O/N/19/No.34

Where must a fuse be connected in a mains electric circuit?

- **A** the earth wire only
- **B** the live wire only
- **C** the neutral wire only
- **D** the live wire and the earth wire

10. 0625/13/O/N/19/No.30

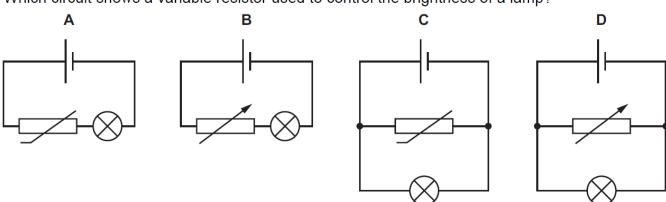
A resistor is connected to a battery. There is a current in the resistor.

What is the main energy change?

- **A** Chemical energy is converted into thermal energy.
- **B** Chemical energy is converted into gravitational potential energy.
- **C** Nuclear energy is converted into thermal energy.
- **D** Nuclear energy is converted into gravitational potential energy.

11. 0625/13/O/N/19/No.31

Lamps X and Y are designed to operate at normal brightness when each are connected to a 3.0 V supply.

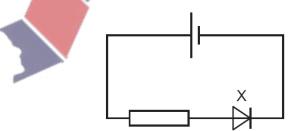

Lamp Z is designed to operate at normal brightness when connected to a 6.0 V supply.

In which circuit do all three lamps operate at normal brightness?

12. 0625/13/O/N/19/No.33

Which circuit shows a variable resistor used to control the brightness of a lamp?

13. 0625/21/O/N/19/No.28

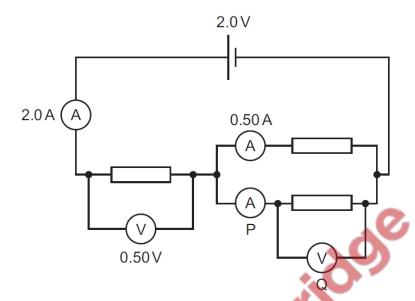

A circuit contains a cell of electromotive force (e.m.f.) of 2.0 V. The current in the circuit is 2.0 A.

How much energy is converted by the cell in 2.0 minutes?

- **A** 2.0 J
- **B** 4.0 J
- **C** 8.0 J
- **D** 480 J

14. 0625/21/O/N/19/No.29

The circuit diagram shows a cell connected in series to a resistor and a component X.


What is component X?

- **A** bell
- **B** diode
- **C** heater
- **D** thermistor

15. 0625/21/O/N/19/No.31

A circuit contains a cell of electromotive force (e.m.f.) 2.0 V, three resistors, three ammeters and two voltmeters. One ammeter is labelled P and one voltmeter is labelled Q.

The readings on the other two ammeters and on the other voltmeter are shown.

What is the reading on ammeter P and what is the reading on voltmeter Q?

	reading on P/A	reading on Q/V
Α	1.5	1.5
В	1.5	2.5
С	2.5	1.5
D	2.5	2.5

16. 0625/21/O/N/19/No.34

A student investigates the output voltage induced across a coil of wire by a bar magnet.

When will the induced voltage have the greatest value?

- A The student slowly moves the bar magnet into the coil of wire.
- **B** The student leaves the bar magnet stationary in the coil of wire.
- **C** The student quickly removes the bar magnet from the coil of wire.
- **D** The student places the bar magnet at rest outside the coil of wire.

17. 0625/22/O/N/19/No.29

There is a current of 2.0 A in a resistor for 30 s. The potential difference (p.d.) across the resistor is 12 V.

How much energy is transferred in the resistor?

A 1.25 J

B 5.0 J

C 180 J

D 720 J

18. 0625/22/O/N/19/No.31

Resistors of 1.0Ω , 2.0Ω and 3.0Ω are connected in parallel with a cell.


Which statement is correct?

- A The current in each resistor is different but the potential difference (p.d.) across each resistor is the same.
- **B** The current in each resistor is the same but the potential difference across each resistor is different.
- **C** The potential difference across the 3.0Ω is greater than the potential difference across the 1.0Ω resistor.
- **D** The sum of the potential differences across each resistor is equal to the electromotive force (e.m.f.) of the cell.

19. 0625/22/O/N/19/No.32

The diagram shows a circuit component.

What is it used for?

- A to allow current in one direction only
- **B** to change the direction of the current
- **c** to emit light when there is a current
- **D** to increase the size of the current

20. 0625/23/O/N/19/No.28

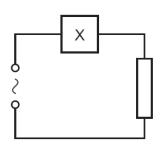
There is a current of $3.0\,\mathrm{A}$ in a resistor for time t. During time t, a charge of $120\,\mathrm{C}$ flows through the resistor.

What is time *t*?

- A 0.025 minutes
- **B** 0.025s
- C 40 minutes
- **D** 40 s

21. 0625/23/O/N/19/No.30

Resistors of resistance 1.0 Ω , 2.0 Ω and 3.0 Ω are connected in parallel across the terminals of a cell.


Which statement is correct?

- A The currents in the resistors are equal.
- **B** The sum of the currents in the three resistors is equal to the current in the cell.
- **C** The sum of the potential differences (p.d.'s) across the resistors is equal to the electromotive force (e.m.f.) of the cell.
- **D** The potential difference across the $3.0\,\Omega$ resistor is greater than the potential difference across the other two resistors.

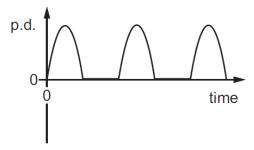

22. 0625/23/O/N/19/No.31

Diagram 1 shows a circuit containing an a.c. power supply, an unknown component X and a fixed resistor.

The graph in diagram 2 shows how the potential difference (p.d.) across the resistor varies with time.

n 1 diagram 2

What is component X?

- A thermistor
- B relay coil
- **C** diode
- **D** light-dependent resistor