Radioactivity - 2019 Nov

1. 0625/11,21/O/N/19/No.37

Which diagram shows a possible structure of a neutral atom?

2. 0625/11/O/N/19/No.38

A nuclide of cobalt contains 27 protons and 32 neutrons.

Which symbol represents this nuclide?

3. 0625/11/O/N/19/No.39

An isotope of radon is radioactive. It decays by emitting an α -particle.

What happens to the nucleus of a radon atom during the emission of the α -particle?

1

- **A** It becomes the nucleus of a different isotope of radon with fewer neutrons.
- **B** It becomes the nucleus of a different isotope of radon with more neutrons.
- **C** It becomes the nucleus of an element with a higher proton number.
- **D** It becomes the nucleus of an element with a lower proton number.

4. 0625/11/O/N/19/No.40

Why are some radioactive sources stored in boxes made from lead?

- A Lead absorbs emissions from the radioactive sources.
- **B** Lead decreases the half-life of radioactive sources.
- **C** Lead increases the half-life of radioactive sources.
- **D** Lead repels emissions from the radioactive sources.

5. 0625/12,22/O/N/19/No.37

The diagrams show the simple atomic structure for two neutral atoms X and Y of different elements.

Which row is correct?

	atom with more electrons	atom with a more positively charged nucleus
Α	×	X
В	X	Y
С	Y	X
D	Y	Y
•	44	

6. 0625/12/O/N/19/No.38

A nuclide of chlorine has the symbol shown.

What is the nucleon number of this nuclide of chlorine?

- **A** 17
- **B** 18
- **C** 35
- **D** 52

7. 0625/12/O/N/19/No.39

Which type of radiation can be stopped by a sheet of paper?

- **A** α-particles
- **B** β-particles
- **C** γ-rays
- **D** X-rays

8. 0625/12/O/N/19/No.40

Why are some radioactive sources stored in boxes made from lead?

- A Lead absorbs emissions from the radioactive sources.
- **B** Lead decreases the half-life of radioactive sources.
- **C** Lead increases the half-life of radioactive sources.
- **D** Lead repels emissions from the radioactive sources.

9. 0625/13,23/O/N/19/No.37,38

The diagram represents a neutral atom.

Which row identifies each type of particle in the diagram?

	0	\circ	
Α	electron	neutron	proton
В	electron	proton	neutron
С	neutron	electron	proton
D	proton	electron	neutron

10. 0625/13/O/N/19/No.38

An iron nuclide is represented by the symbol shown.

Which statements about a nucleus of this iron nuclide are correct?

- 1 The nucleus contains 56 neutrons.
- 2 The nucleon number is 30.
- 3 The proton number is 26.
- A 1 and 2 only B 1 and 3 only C 2 and 3 only D 3 only

11. 0625/13/O/N/19/No.39

Three types of radiation that can cause ionisation are α -, β - and γ -radiation.

Which row identifies the least and the most ionising of these radiations?

	least ionising	most ionising
Α	α	β
В	α	γ
С	γ	β
D	γ	α

12. 0625/13,23/O/N/19/No.40,38

Why are some radioactive sources stored in boxes made from lead?

- A Lead absorbs emissions from the radioactive sources.
- **B** Lead decreases the half-life of radioactive sources.
- **C** Lead increases the half-life of radioactive sources.
- D Lead repels emissions from the radioactive sources.

13. 0625/21/O/N/19/No.38

The scattering of particles by a thin gold foil provided scientists with evidence for the nuclear atom.

Which particles were scattered by the gold nuclei in the thin foil?

- A α-particles
- **B** β -particles
- C neutrons
- **D** protons

14. 0625/21/O/N/19/No.39

The diagram shows β -particles being directed between the poles of a magnet.

In which direction will the particles be deflected?

- A into the page
- B out of the page
- c towards the bottom of the page
- D towards the top of the page

15. 0625/21/O/N/19/No.40

Why are some radioactive sources stored in boxes made from lead?

- A Lead absorbs emissions from the radioactive sources.
- **B** Lead decreases the half-life of radioactive sources.
- C Lead increases the half-life of radioactive sources.
- D Lead repels emissions from the radioactive sources.

16. 0625/22/O/N/19/No.38

Plutonium-238 decays by the emission of an α -particle.

Which equation represents the decay of a plutonium-238 nucleus?

a
$$^{238}_{94}Pu \rightarrow ^{238}_{95}U + ^{0}_{-1}\alpha$$

в
$$^{238}_{94}Pu \rightarrow ^{234}_{92}U + ^{4}_{2}\alpha$$

$$c \quad {}^{238}_{94}Pu \ \to \ {}^{234}_{92}U \ + \ {}^{2}_{4}\alpha$$

$$D \quad {}^{238}_{94} Pu \ \rightarrow \ {}^{242}_{96} U \ + \ {}^{4}_{2} \alpha$$

17. 0625/22/O/N/19/No.39

A radioactive isotope has a half-life of 8 days.

A detector close to a sample of this isotope gives a count rate of 200 counts per minute. ys? Without the source, the background count is 20 counts per minute.

What is the count rate due to the source after 8 days?

- 80 counts per minute
- В 90 counts per minute
- 100 counts per minute C
- D 110 counts per minute

18. 0625/22/O/N/19/No.40

Why are some radioactive sources stored in boxes made from lead?

6

- Α Lead absorbs emissions from the radioactive sources.
- В Lead decreases the half-life of radioactive sources.
- C Lead increases the half-life of radioactive sources.
- Lead repels emissions from the radioactive sources. D

19. 0625/23/O/N/19/No.39

A thin metal foil is placed in a vacuum. α -particles are fired at the foil and most go straight through. A very small proportion of the α -particles are deflected through large angles.

What does this provide evidence for?

- **A** α -particles are very small.
- **B** There are negative electrons in each atom.
- **C** There is a tiny nucleus in each atom.
- **D** There are neutrons in each atom.

20. 0625/23/O/N/19/No.40

The background count rate measured by a radiation counter is 40 counts per minute.

With the counter close to a radioactive source, the counter reading is 960 counts per minute.

The half-life of the source is 20 minutes.

What is the counter reading one hour later?

- A 115 counts per minute
- B 120 counts per minute
- C 155 counts per minute
- **D** 160 counts per minute