<u>Electromagnetic Induction – 2020 IGCSE 0625</u>

1. Nov/2020/Paper_11/No.34

An electromagnet is positioned close to a coil of wire.

The electromagnet is switched on, remains on for a short time, and is then switched off.

Three statements about the pointer on the galvanometer during this sequence are given.

- 1 The pointer kicks to one side as the electromagnet is switched on.
- 2 The pointer records a steady non-zero value while the electromagnet remains switched on.
- 3 The pointer kicks to the other side as the electromagnet is switched off.

Which statements are correct?

A 1 and 2 only B 1 and 3 only C 2 and 3 only D 1, 2 and

2. Nov/2020/Paper_11/No.35

A transformer is needed to convert a supply of 240 Va.c. into 4800 Va.c.

Which pair of coils would be suitable for this transformer?

	number of turns on primary coil <i>N</i> _P	number of turns on secondary coil <i>N</i> _S
Α	50	1 000
В	240	48 000
С	480	24
D	2000	100

3. Nov/2020/Paper_12/No.34

A student investigates electromagnetic induction. She moves the N pole of a magnet quickly towards a coil of wire. There is a reading on the galvanometer.

What can she do to get a greater reading on the galvanometer?

- A Hold the bar magnet stationary inside the coil.
- **B** Move the bar magnet slowly away from the coil.
- C Use a coil of wire with fewer turns on it.
- D Use a stronger bar magnet.

4. Nov/2020/Paper_12/No.35

A transformer is needed to convert a supply of 240 V a.c. into 4800 V a.c.

Which pair of coils would be suitable for this transformer?

	number of turns on primary coil <i>N</i> _P	number of turns on secondary coil <i>N</i> _S
Α	50	1000
В	240	48 000
С	480	24
D	2000	100

5. Nov/2020/Paper_12/No.36

The diagram shows a wire carrying a current in the direction shown. The wire is between the poles of a magnet.

A force is produced on the wire out of the page.

The wire and magnet are now put into different arrangements X, Y and Z. The arrow shows the direction of the current in each case.

In which arrangements is the force on the wire out of the page?

- A X only
- B X and Y
- C X and Z
- D Z only

6. Nov/2020/Paper_13/No.34

When a metal wire moves up, cutting a magnetic field, an electromotive force (e.m.f.) is induced across the wire.

Which change affects the magnitude of the induced e.m.f.?

- A moving the wire down at the same speed
- B moving the wire up at a faster speed
- C using a thicker wire
- D using a wire made from a different metal

7. Nov/2020/Paper_13/No.35

A transformer is needed to convert a supply of 240 V a.c. into 4800 V a.c..

Which pair of coils would be suitable for this transformer?

	number of turns on primary coil <i>N</i> _P	number of turns on secondary coil <i>N</i> _S
Α	50	1000
В	240	48 000
С	480	24
D	2000	100

8. Nov/2020/Paper_13/No.36

The diagram shows a wire carrying a current in the direction shown. There is a magnetic field acting from left to right. The wire experiences a force acting out of the page.

The current is now reversed.

In which direction does the force on the wire now act?

- A into the page
- B out of the page
- C to the left
- **D** to the right

9. Nov/2020/Paper_21/No.35

A transformer is needed to convert a supply of 240 V a.c. into 4800 V a.c..

Which pair of coils would be suitable for this transformer?

	number of turns on primary coil <i>N</i> _P	number of turns on secondary coil <i>N</i> _S
Α	50	1000
В	240	48 000
С	480	24
D	2000	100

10. Nov/2020/Paper_22/No.34

The diagram shows an a.c. generator used to power a lamp. The coil rotates in a clockwise direction.

Which magnetic poles are X and Y?

	X	Y
Α	N pole	N pole
В	N pole	S pole
С	S pole	N pole
D	S pole	S pole

11. Nov/2020/Paper_22/No.35

A transformer is needed to convert a supply of 240 V a.c. into 4800 V a.c.

Which pair of coils would be suitable for this transformer?

	number of turns on primary coil <i>N</i> _P	number of turns on secondary coil <i>N</i> _S
Α	50	1000
В	240	48 000
С	480	24
D	2000	100

12. Nov/2020/Paper_22/No.36

The diagram shows a coil of wire wrapped around a soft-iron rod.

The wire is connected to a d.c. power supply as indicated.

The apparatus is in a region which is totally shielded from the Earth's magnetic field.

A small compass needle is placed at point P.

In which direction does the N pole of the compass needle point?

- A towards the bottom of the page
- B towards the left of the page
- C towards the right of the page
- D towards the top of the page

13. Nov/2020/Paper_23/No.34

Graph X shows the output from an a.c. generator.

Which changes can be made so that the generator produces graph Y?

- A Decrease the magnetic field strength and decrease the speed of rotation only.
- B Increase the magnetic field strength and decrease the number of coils only.
- C Increase the number of coils only.
- **D** Increase the speed of rotation only.

14. Nov/2020/Paper_23/No.35

A transformer is needed to convert a supply of 240 Va.c. into 4800 Va.c.

Which pair of coils would be suitable for this transformer?

	number of turns on primary coil <i>N</i> _P	number of turns on secondary coil <i>N</i> _S
Α	50	1000
В	240	48 000
С	480	24
D	2000	100

15. Nov/2020/Paper_31/No.12

(a) Fig. 12.1 shows two circuits, A and B, linked by a relay.

Fig. 12.1

[3

(b) Another circuit includes a transformer. The input voltage of the transformer is 120 V a.c. The input coil has 480 turns of wire and the output coil has 60 turns of wire.

Calculate the output voltage of the transformer.

16. Nov/2020/Paper_32/No.11

(b)

(c)

Fig. 11.1 represents a transformer. The primary coil has 300 turns and the secondary coil has 30 turns. The input voltage is 230 Va.c.

Fig. 11.1

(a) Calculate the voltage across the secondary coil.

	voltage = V [3]
State a suitable material for the core of the	ne transformer.
	[1]
	al voltage for the transmission of electrical energy.
2	
**	[2]

[Total: 6]

17.	Nov	v/2020/Paper_33/No.10	
	(a)	Describe an experiment to show that a force acts on a current-carrying conductor placed in a magnetic field. You may draw a diagram to help your answer.	
		The ground natural may are the diagram to mark your entertain	
		[4]	
	(b)	A current in a wire can cause the wire to get hot and melt the wire.	
		Describe how to reduce the heating effect of a current.	

[Total: 5]

Nov/	[/] 2020/Paper_43/No.9
(a)	Electrical power is produced in a power station by an alternating current (a.c.) generator. The output of the generator has a voltage of 22 000 V. The electrical power is transmitted at a voltage of 400 000 V.
	Explain why electrical power is transmitted at a voltage of 400 000 V and not 22 000 V.
	[3]
(b)	A computer contains a transformer.
	The input voltage to the transformer is 240 V. The output voltage from the transformer is $20\mathrm{V}$ and the output current is $2.3\mathrm{A}$.
	The efficiency of the transformer is 90%.
	Calculate the input current to the transformer.
	Calculate the input current to the transformer.

18.

[Total: 8]