Radioactivity - 2020 IGCSE 0625

1. Nov/2020/Paper_11/No.37

Which statement is correct for the nucleus of any atom?

- A The nucleus contains electrons, neutrons and protons.
- **B** The nucleus contains the same number of protons as neutrons.
- C The nucleus has a total charge of zero.
- The nucleus is very small compared with the size of the atom. D

2. Nov/2020/Paper 11/No.38

The nucleus of an atom X is represented by the notation shown.

How many protons and how many neutrons are in this nucleus?

	number of protons	number of neutrons
Α	Р	Ø
В	Р	Q – P
С	Q	Р
D	Q	P – Q

3. Nov/2020/Paper_11/No.39

vher A radiation detector records a low reading even when no radioactive source is close. This is due to background radiation.

What does not contribute to this background radiation?

- A rocks on Earth
- B cosmic rays from the Sun
- C satellite TV signals
- **D** waste from nuclear power stations

4. Nov/2020/Paper_11/No.40

The graph shows the radioactive decay curve of a substance.

What is the half-life of this substance?

- A 0.5 years
- **B** 5 years
- C 15 years
- D 30 years

5. Nov/2020/Paper_12/No.37

Which statement is correct for the nucleus of any atom?

- A The nucleus contains electrons, neutrons and protons.
- B The nucleus contains the same number of protons as neutrons.
- C The nucleus has a total charge of zero.
- **D** The nucleus is very small compared with the size of the atom.

6. Nov/2020/Paper_12/No.38

The symbol represents a nucleus of zinc

Which row gives the numbers of protons and neutrons in this nucleus?

	number of protons	number of neutrons
Α	30	38
В	30	68
С	38	30
D	38	68

7. Nov/2020/Paper_12/No.39

Three types of radiation are α -radiation, β -radiation and γ -radiation.

Which statement is correct?

A α -radiation is less ionising than β -radiation.

B α -radiation is less ionising than γ -radiation.

C γ -radiation produces no ionisation.

D β -radiation is more ionising than γ -radiation.

8. Nov/2020/Paper_12/No.40

The graph shows the radioactive decay curve of a substance.

What is the half-life of this substance?

A 0.5 years

B 5 years

C 15 years

D 30 years

9. Nov/2020/Paper_13/No.37

Which statement is correct for the nucleus of any atom?

A The nucleus contains electrons, neutrons and protons.

B The nucleus contains the same number of protons as neutrons.

C The nucleus has a total charge of zero.

D The nucleus is very small compared with the size of the atom.

10. Nov/2020/Paper_13/No.38

How many protons and how many neutrons are in a nucleus of $^{234}_{90}Th$?

	protons	neutrons
Α	90	144
В	90	234
С	144	90
D	234	90

11. Nov/2020/Paper_13/No.39

A radiation detector in a laboratory is measuring background radiation.

Which row describes the readings and the cause?

	readings	cause
Α	vary with no pattern	background radiation is random
В	vary with no pattern	radiation detectors are unstable
С	slowly increase during the day	background radiation increases as temperature increases
D	slowly reduce during the day	background radiation decreases as temperature increases

12. Nov/2020/Paper_13/No.40

The graph shows the radioactive decay curve of a substance.

What is the half-life of this substance?

- A 0.5 years
- B 5 years
- C 15 years
- D 30 years

13. Nov/2020/Paper_21/No.37

A beam of particles moves through a magnetic field.

In which situation do the particles experience a magnetic force?

- **A** a beam of α -particles moving parallel to the magnetic field lines
- B a beam of electrons moving parallel to the magnetic field lines
- **C** a beam of β -particles moving perpendicularly across the magnetic field lines
- **D** a beam of neutrons moving perpendicularly across the magnetic field lines

14. Nov/2020/Paper 21/No.38

Which statement is correct for the nucleus of any atom?

- A The nucleus contains electrons, neutrons and protons.
- **B** The nucleus contains the same number of protons as neutrons.
- C The nucleus has a total charge of zero.
- D The nucleus is very small compared with the size of the atom.

15. Nov/2020/Paper_21/No.39

Two beams of radiation, P and Q, enter an electric field as shown.

Which type of radiations are P and Q?

	Р	Q
Α	beta (β)	alpha (α)
В	beta (β)	gamma (γ)
С	gamma (γ)	alpha (α)
D	gamma (γ)	gamma (γ)

16. Nov/2020/Paper_21/No.40

Which equation represents the β -decay of lead-209?

$$A \ ^{209}_{82}Pb + ^{0}_{-1}e \rightarrow ^{209}_{83}Bi$$

в
$$^{209}_{82}$$
Pb + $^{0}_{-1}$ e $\rightarrow ^{209}_{81}$ Т l

$$D \stackrel{209}{82} Pb \rightarrow {}^{209}_{81} Tl + {}^{0}_{-1} e$$

17. Nov/2020/Paper_22/No.37

Which statement is correct for the nucleus of any atom?

- The nucleus contains electrons, neutrons and protons.
- The nucleus is very small compared with the size of the atom.

 /2020/Paper_22/No.38

 symbol represents a nucleus of zinc. The nucleus contains the same number of protons as neutrons.
- С
- D

18. Nov/2020/Paper_22/No.38

The symbol represents a nucleus of zinc.

Which row gives the numbers of protons and neutrons in this nucleus?

	number of protons	number of neutrons
Α	30	38
В	30	68
С	38	30
D	38	68

19. Nov/2020/Paper_22/No.39

The diagram shows a beam of β-particles passing through a strong electric field.

In which direction will the β -particles be deflected?

- A upwards towards the top of the page
- downwards towards the bottom of the page
- C into the plane of the page
- out of the plane of the page D

20. Nov/2020/Paper 22/No.40

Carribildoe Which equation represents the β -decay of lead-209?

a
$$^{209}_{82}$$
Pb + $^{0}_{-1}$ e $\rightarrow ^{209}_{83}$ Bi

в
$$^{209}_{82}$$
Pb + $^{0}_{-1}$ e $\rightarrow ^{209}_{81}$ Т l

$$c \ ^{209}_{82} Pb \rightarrow \ ^{209}_{83} Bi + \ ^{0}_{-1} e$$

$${\tt D} \ {}^{209}_{82} {\sf Pb} \ \to \ {}^{209}_{81} {\sf T} \it{l} \ + \ {}^{0}_{-1} e$$

21. Nov/2020/Paper_23/No.37

Which statement is correct for the nucleus of any atom?

- The nucleus contains electrons, neutrons and protons.
- В The nucleus contains the same number of protons as neutrons.
- The nucleus has a total charge of zero. С
- The nucleus is very small compared with the size of the atom.

22. Nov/2020/Paper_23/No.38

How many protons and how many neutrons are in a nucleus of $^{234}_{90}\text{Th}$?

	protons	neutrons
Α	90	144
В	90	234
С	144	90
D	234	90

23. Nov/2020/Paper 23/No.39

Which statement about γ -rays is correct?

- A They are deflected by both electric and magnetic fields.
- **B** They are deflected by magnetic fields but not by electric fields.
- C They are deflected by electric fields but not by magnetic fields.
- **D** They are not deflected either by electric fields or by magnetic fields.

24. Nov/2020/Paper_23/No.40

Which equation represents the β -decay of lead-209?

$$\text{A} \quad {}^{209}_{82} \text{Pb} \ + \ {}^{0}_{-1} \text{e} \ \to \ {}^{209}_{83} \text{Bi}$$

в
$$^{209}_{82}$$
Pb + $^{0}_{-1}$ e $\rightarrow ^{209}_{81}$ Т l

D
$$^{209}_{82}\text{Pb} \rightarrow ^{209}_{81}\text{T}l + ^{0}_{1}\text{e}$$

(a) Fig. 11.1 represents the particles in a neutral lithium atom.

Fig. 11.1

Use the information in Fig. 11.1 about the lithium atom to answer (a)(i), (a)(ii) and (a)(iii).

- (i) Determine the number of electrons. [1]

- (b) The count rate of a radioactive sample is 2400 counts per minute at 10 am on one day. The half-life of the sample is two days.

Predict the count rate at 10 am four days later.

count rate = counts per minute [3]

[Total: 6]

26. Nov/2020/Paper_32/No.12

A teacher is investigating radioactivity.

The teacher measures the background radiation in the laboratory.

(a) State one source of background radiation.

.....[1]

(b) A teacher measures the count rate of a radioactive isotope.

Fig. 12.1 shows the graph of her results.

Fig. 12.1

(i) Determine the half-life of the radioactive isotope. Use information from Fig. 12.1.

Show on Fig. 12.1 how you obtained your value.

(ii) The radioactive isotope emits γ -radiation.

Describe one method of safely storing the radioactive isotope.

.....

[Total: 5]

27. Nov/2020/Paper_33/No.11

(a) Fig. 11.1 represents the structure of four atoms P, Q, R and S.

Fig. 11.1

Sta	te wh	nich two atoms are isotopes of the same element and explain your answer.
		and
exp	nanai	ion
••••		[2]
(b)	Rac	liographers use X-ray machines in hospitals. X-rays can cause damage to living things.
	(i)	State an example of the damage that may be caused by X-rays.
		[1]
	(ii)	State and explain how radiographers can be protected from damage caused by X-rays.
		10
		[2]

(c) A radioactive source is placed near to a detector, as shown in Fig. 11.2.

The meter shows a reading of 239 counts per second.

Fig. 11.2

A sheet of paper is placed between the detector and the radioactive source. The meter shows a reading of 240 counts per second.

The sheet of paper is removed and a thin sheet of aluminium is placed between the detector and the radioactive source. The meter shows a reading of 3 counts per second.

(i)	Deduce the type of radiation emitted by the radioactive source.
	[1]
(ii)	The radioactive source is removed. The meter shows a reading of 3 counts per second.
	State why the meter does not show a reading of zero counts per second.
	[1]
	[Total: 7]

28. Nov/2020/Paper_41/No.10

A radiation detector is placed on the bench in a laboratory. It detects a background count rate of 40 counts/minute.

(a)	Stat	te what is meant by background radiation. Suggest one source for it.
		[2]
(b)	lead	ample containing atoms of the radioactive isotope polonium-208 is removed from a d container and brought close to the detector. The average count rate increases to counts/minute.
		en two sheets of paper are inserted between the sample and the detector, the average nt rate returns to 40 counts/minute.
	Polo	onium-208 is represented by the symbol $^{208}_{84}$ Po. It decays to an isotope of lead (Pb).
	(i)	Deduce the type of radiation emitted by polonium-208. Explain your answer.
		[2]
	(ii)	Write down the nuclide equation for the decay of polonium-208.
		Oak
		[3]
		[Total: 7]

ΙΝΟν/	2020	//Paper_42/NO.11
(a)	Stat	te two differences between nuclear fission and nuclear fusion.
	1	
	2	
		[2]
(b)		dioactive tracers emitting γ -rays can be used in medicine. The half-life of the source of se γ -rays is 6 hours.
	(i)	Explain why a source of $\gamma\text{-rays}$ used in this way should not have a half-life shorter or longer than about 6 hours.
		[2]
	(ii)	Technetium-99 is a source of γ -rays often used as a radioactive tracer. It is produced from molybdenum-99 which emits β -particles. The symbol for technetium is Tc and the symbol for molybdenum is Mo.
		Complete the nuclide equation for this decay.
		$^{99}_{42} \text{ Mo} \rightarrow \cdots$ Tc + \cdots β
	(iii)	Technetium-99 is a radioactive nuclide.
		State another use of radioactive nuclides in medicine.

[Total: 8]

30. Nov/2020/Paper_43/No.11

(a) Fig. 11.1 shows a beam of α -particles, β -particles and γ -rays directed between two metal plates P and Q.

Fig. 11.1

The metal plates are parallel and there is a large potential difference (p.d.) between them. Plate P is positive and plate Q is negative.

On Fig. 11.1, draw the paths of each of the radiations between the plates and after leaving the plates.

Label the paths α, β and γ. [5] **(b)** State and explain **one** practical application of γ-rays.

application

explanation

[7]

[7]

[7]