# **Turning Effect of Force – 2020 IGCSE 0625**

#### 1. Nov/2020/Paper\_11/No.7

A uniform plank rests on a pivot at its centre.

Two children P and Q sit on the plank in the positions shown.



The mass of child P is 25 kg.

The plank is balanced.

What is the mass of child Q?

- **A** 20 kg
- **B** 25 kg
- C 31 kg
- D 45 kg

#### 2. Nov/2020/Paper\_11/No.8

An object is in equilibrium on the Earth.

Which statement is correct?

- A All the forces acting on the object are in the same direction.
- B All the forces acting on the object have the same value.
- C The object is weightless.
- **D** The resultant force acting on the object is zero.

# **3.** Nov/2020/Paper\_12/No.7

A force of 4.0 N acts on a beam as shown.



The line of action of the force is a distance x from a pivot. The moment of this force about this pivot is  $8.0\,\mathrm{N}\,\mathrm{cm}$ .

What is distance x?

- **A** 0.50 cm
- **B** 2.0 cm
- **C** 12 cm
- **D** 32 cm

#### 4. Nov/2020/Paper\_12/No.8

The diagram shows a stand. The stand holds a heavy mass above the bench.



Which two changes would definitely make the stand more stable?

- A Lower the mass and make the base narrower.
- B Lower the mass and make the base wider.
- C Raise the mass and make the base narrower.
- D Raise the mass and make the base wider.

### 5. Nov/2020/Paper\_13/No.8

Students X and Y are sitting on a seesaw. Student X has a weight of 400 N and student Y has a weight of 600 N. The seesaw is in equilibrium.



Which statement correctly describes why the seesaw is in equilibrium?

- A The resultant force is zero and the resultant moment is zero.
- **B** The resultant force is 200 N and the resultant moment is zero.
- C The sum of the downward forces is zero and the resultant moment is zero.
- D The total downward force is 1000 N and the resultant moment is 200 Nm.

#### **6.** Nov/2020/Paper\_21/No.7

A uniform plank rests on a pivot at its centre.

Two children P and Q sit on the plank in the positions shown.



The mass of child P is 25 kg

The plank is balanced.

What is the mass of child Q?

**A** 20 kg **B** 25 kg **C** 31 kg **D** 45 kg

### **7.** Nov/2020/Paper\_22/No.7

The diagram shows a beam lying on the ground. End Q is lifted from the ground by the force F.

End P of the beam remains on the ground.



The length of the beam is 3.0 m and its weight is 600 N.

The centre of mass of the beam at G is 1.0 m from end P.

What is the size of the force F when it just raises end Q from the ground?

- **A** 200 N
- **B** 300 N
- **C** 400 N
- **D** 600 N

#### 8. Nov/2020/Paper\_22/No.8

The diagram shows a stand. The stand holds a heavy mass above the bench.



Which two changes would definitely make the stand more stable?

- A Lower the mass and make the base narrower.
- **B** Lower the mass and make the base wider.
- C Raise the mass and make the base narrower.
- D Raise the mass and make the base wider.

# **9.** Nov/2020/Paper\_23/No.7

The diagram shows a car moving along a road.

The force due to the engine is 1500 N and the total drag force is 200 N.



What is the motion of the car?

- A constant speed
- B decreasing speed
- C increasing speed
- **D** reversing

#### 10. Nov/2020/Paper\_23/No.8

The diagram shows a trolley used to transport a load of 400 N.

A force F vertically downwards is needed to balance the trolley as shown.

The centre of mass of the trolley is vertically above the pivot.



What is the value of F?

- **A** 133 N
- **B** 150 N
- **C** 300 N
- **D** 400 N

# **11.** Nov/2020/Paper\_31/No.3(b)

(b) Fig. 3.2 shows the force applied to the brake pedal by the driver's foot.



Fig. 3.2

Calculate the moment of the force about the pivot. Include the unit.

moment = ...... unit ...... [4]

### 12. Nov/2020/Paper\_32/No.2

A car driver needs to remove one of the wheels on his car. He puts a spanner on a wheel nut.



Fig. 2.1

(a) The driver applies a force of 200 N, as shown in Fig. 2.1.

less than

Calculate the moment of the 200 N force about the centre of the wheel nut.

|     | moment of force = Ncm [3]                                                                                                                                  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b) | The moment in (a) does not release the wheel nut. The driver cannot increase the force but can increase its moment.                                        |
|     | State and explain how the driver can increase the moment of the force.                                                                                     |
|     | statement                                                                                                                                                  |
|     | explanation                                                                                                                                                |
|     |                                                                                                                                                            |
|     | [2]                                                                                                                                                        |
| (c) | The driver releases a second wheel nut in a shorter time than the first wheel nut. The driver uses the same amount of energy in releasing both wheel nuts. |
|     |                                                                                                                                                            |

Complete the sentences using the phrases in the box. Each phrase may be used once, more than once or not at all.

the same as

[2]

[Total: 7]

greater than

### **13.** Nov/2020/Paper\_33/No.2

(a) Fig. 2.1 shows two children sitting on a see-saw.



Fig. 2.1 (not to scale)

(i) The weight of child A is 125 N.

Calculate the mass of child A. Include the unit in your answer.

(ii) Fig. 2.1 shows child A and child B sitting in positions which balance the see-saw horizontally.

Using the information in Fig. 2.1, determine the distance X.



(b) The person in Fig. 2.2 is pushing a child on a swing.



Fig. 2.2

State the name of the force that acts against the motion of the swing.

[1]

[Total: 7]

# **14.** Nov/2020/Paper\_42/No.2

(a) Define the moment of a force about a point.

(b) Fig. 2.1 shows a uniform rod of wood suspended from a pivot.



Fig. 2.1 (not to scale)

The rod is held stationary by a horizontal force F acting as shown. The mass of the rod is  $0.080 \, \mathrm{kg}$ .

Calculate:

(i) the weight W of the rod

(ii) the moment of W about the pivot

(iii) the moment of F about the pivot

(iv) the force F.

C) The angle between the rod and the vertical is increased.

State whether the force F needed to hold the rod stationary must be increased, decreased or stay the same.

Explain your answer.

[Total: 9]

