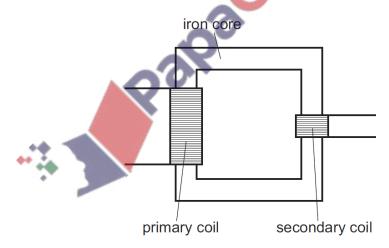

#### Electromagnetic Induction – 2021 IGCSE 0625

#### **1.** June/2021/Paper\_11,12,13,21,22&23/No.34,35

A solenoid is connected to a very sensitive ammeter. A rod is inserted into one end of the solenoid. The ammeter shows that there is a small electric current in the solenoid while the rod is moving.




Which rod is being inserted?

- A a heated copper rod
- B a magnetised steel rod
- C an uncharged nylon rod
- D a radioactive uranium rod

#### **2.** June/2021/Paper\_11&21/No.35.36

The diagram shows a transformer. There are 460 turns on the primary coil and 24 turns on the secondary coil. The primary voltage is 230 V.



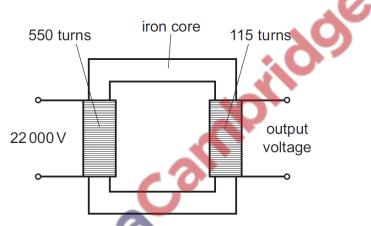
What is the secondary voltage?

- **A** 2.0 V
- **B** 12 V
- **C** 48 V
- **D** 4400 V

horidae

## **3.** June/2021/Paper\_11/No.36

A class is designing a d.c. motor. To achieve a greater turning effect, three suggestions are made.

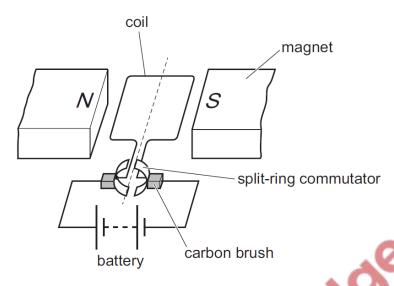

- 1 Have a larger current in the coil of the motor.
- 2 Have a stronger magnet in the motor.
- 3 Put a larger number of turns on the coil.

Which suggestions will help to increase the turning effect?

- **A** 1, 2 and 3
- **B** 1 and 2 only
- C 1 and 3 only
- **D** 2 and 3 only

# **4.** June/2021/Paper\_12&22/No.35,36

The diagram shows a transformer.

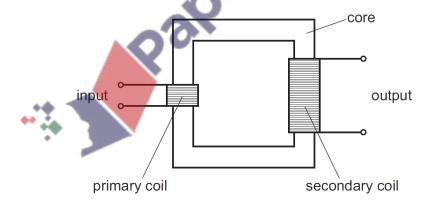



What is the output voltage?

- **A** 0.35 V
- **B** 2.9 V
- **C** 4600 V
- **D** 105 000 V

#### **5.** June/2021/Paper\_12/No.36

The diagram shows a d.c. motor.




Which two changes together will always make the coil spin more slowly?

- A Decrease the current in the coil and use a magnet of less strength.
- **B** Decrease the current in the coil and increase the number of turns on the coil.
- C Increase the current in the coil and use a magnet of less strength.
- **D** Increase the current in the coil and decrease the number of turns on the coil.

### **6.** June/2021/Paper\_13/No.35

The diagram shows a transformer with more turns on the secondary coil than on the primary coil.



#### Which row is correct?

|   | material of core | material of coils | type of transformer |  |
|---|------------------|-------------------|---------------------|--|
| Α | copper           | iron              | step-up             |  |
| В | copper           | iron              | step-down           |  |
| С | iron             | copper            | step-up             |  |
| D | iron             | copper            | step-down           |  |

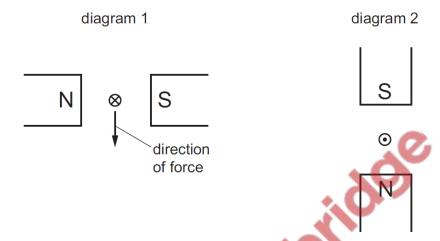

### **7.** June/2021/Paper\_13/No.36

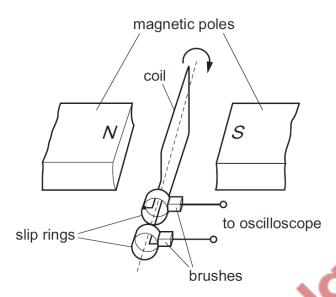
Diagram 1 shows a wire carrying an electric current into the page.

The wire is between the poles of a magnet.

A force is produced on the wire acting down towards the bottom of the page.

Diagram 2 shows the situation after the current is reversed and the magnet is turned through 90°.




In which direction does the force act after these changes?

- A towards the top of the page
- **B** towards the bottom of the page
- C towards the left-hand side of the page
- D towards the right-hand side of the page

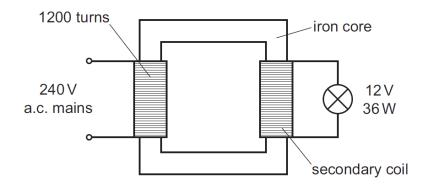


# **8.** June/2021/Paper\_21/No.35

The diagram shows an electric generator with the coil in a vertical position.



# Which row describes the generator?

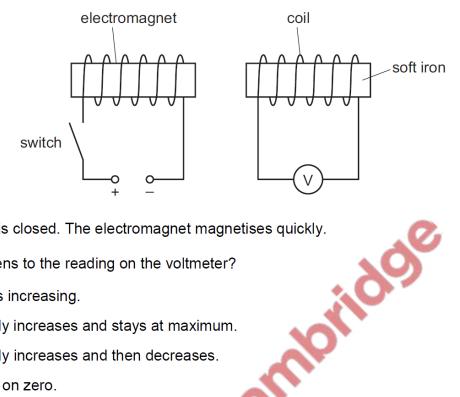

|   | the generator produces | the voltage output will be zero when |  |  |
|---|------------------------|--------------------------------------|--|--|
| Α | a.c.                   | the coil is horizontal               |  |  |
| В | a.c.                   | the coil is vertical                 |  |  |
| С | d.c.                   | the coil is horizontal               |  |  |
| D | d.c. the coil is verti |                                      |  |  |



## **9.** June/2021/Paper\_23/No.35

A 12 V, 36 W lamp shines at normal brightness when connected to a mains transformer.

Assume the transformer is 100% efficient.



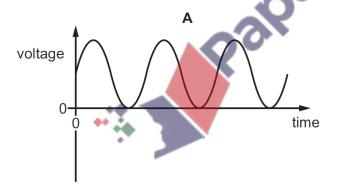

Which row shows the number of turns in the secondary coil and the current in the mains wires?

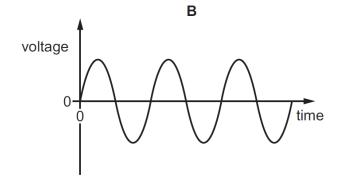


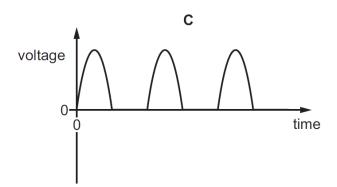
### **10.** March/2021/Paper\_12&22/No.35

The diagram shows an electromagnet near a coil of wire connected to a voltmeter. The reading on the voltmeter is zero.




The switch is closed. The electromagnet magnetises quickly.

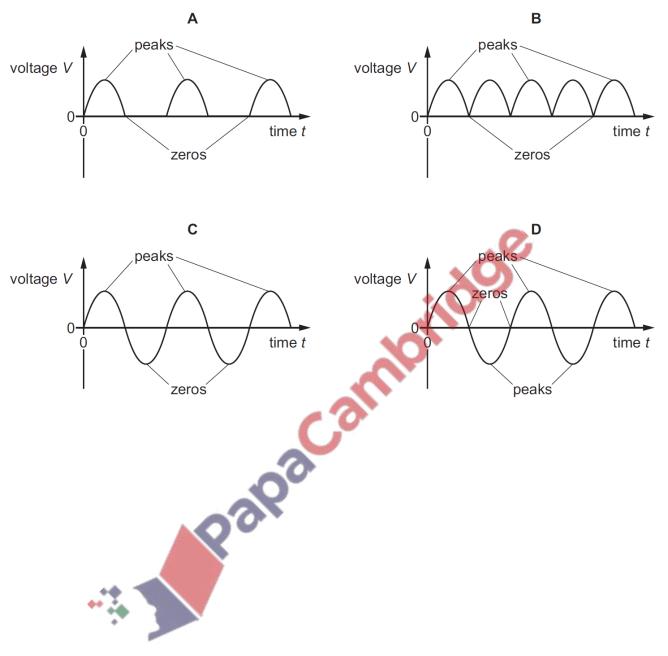

What happens to the reading on the voltmeter?


- Α It keeps increasing.
- It quickly increases and stays at maximum. В
- C It quickly increases and then decreases.
- It stays on zero. D

### **11.** March/2021/Paper\_12/No.36

Which diagram represents the voltage output of a simple a.c. generator?










# **12.** March/2021/Paper\_22/No.37

Which graph shows the voltage output of an a.c. generator with the peaks and zeros correctly labelled?



## **13.** June/2021/Paper\_31/No.11

A student uses a coil and a magnet on a spring to generate an electromotive force (e.m.f.) that varies. He suspends the magnet above a coil as shown in Fig. 11.1.

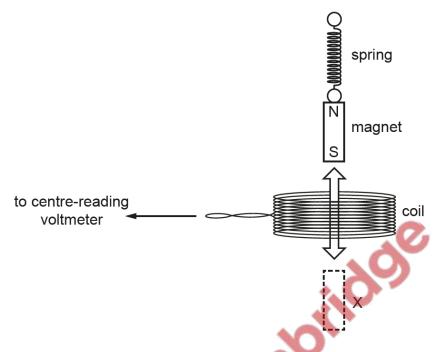
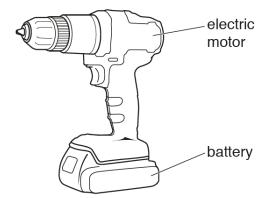



Fig. 11.1

(a) The student pulls the magnet through the coil to X and then releases it. The magnet moves up and down through the coil.

State the type of voltage induced in the coil. Tick ( $\checkmark$ ) one box.




(b) State two ways of increasing the voltage induced in the coil.

| 1. |     |
|----|-----|
|    |     |
| 2. |     |
|    | [2] |

[Total: 3]

Fig. 10.1 shows an electric screwdriver which has an electric motor and a battery.



|     |      | Fig. 10.1                                                                                                                                                    |
|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) | (i)  | The electric motor has a current-carrying coil in a magnetic field. The screwdriver's manufacturer decides that the turning effect of the coil is too small. |
|     |      | State <b>three</b> ways of increasing the turning effect of the coil.                                                                                        |
|     |      | 1                                                                                                                                                            |
|     |      | 2                                                                                                                                                            |
|     |      | 3                                                                                                                                                            |
|     |      | [3]                                                                                                                                                          |
|     | (ii) | The coil in the motor can rotate in either direction.                                                                                                        |
|     |      | State what happens in the coil to reverse the direction of rotation.                                                                                         |
|     |      | [1]                                                                                                                                                          |
| (b) | The  | battery is charged using a transformer connected to an a.c. power supply.                                                                                    |
|     |      | primary voltage $V_{\rm p}$ to the transformer is 234V and the secondary voltage $V_{\rm s}$ of the sformer is 18V.                                          |
|     | The  | number of turns on the primary coil $N_{\rm p}$ is 2470 turns.                                                                                               |
|     | Cald | culate the number of turns on the secondary coil $N_{ m s}$ .                                                                                                |
|     |      |                                                                                                                                                              |

$$N_{s} =$$
 [3]

[Total: 7]

Fig. 7.1 represents an alternating current (a.c.) generator.




Fig. 7.1

- (a) A student rotates the handle H, as shown in Fig. 7.1.
  - (i) On Fig. 7.2, sketch a graph to show how the electromotive force (e.m.f.) between terminals X and Y varies with time during **two** complete revolutions of the coil.



Fig. 7.2

[3]

- (ii) On Fig. 7.2, mark and label a point P, for the e.m.f. when the coil is horizontal, as shown in Fig. 7.1.
- (iii) The student turns the handle more quickly.

State **two** ways in which the e.m.f. between terminals X and Y changes.

1. .....

Z. ......r

[2]

| (b) | Terminals X and Y are connected to the primary coil of a transformer.                                                   |
|-----|-------------------------------------------------------------------------------------------------------------------------|
|     | State and explain what happens in the transformer as the student turns the handle of the a.c. generator.                |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     | [3]                                                                                                                     |
| (c) | Explain why the power losses in transmission cables are lower when electrical energy is transmitted at higher voltages. |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     | [2]                                                                                                                     |
|     | [Total: 11]                                                                                                             |
|     |                                                                                                                         |

## **16.** June/2021/Paper\_42/No.8(b)

(b) Fig. 8.3 shows a simple direct current (d.c.) electric motor with a split-ring commutator.

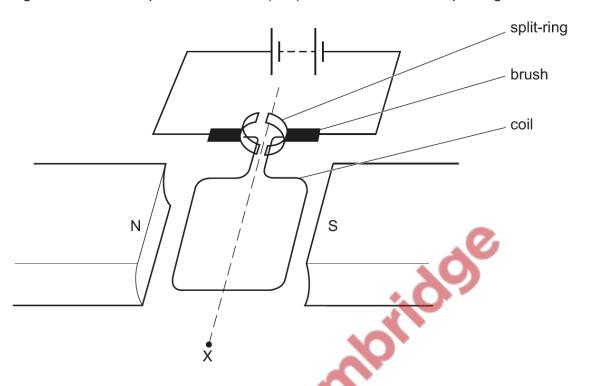



Fig. 8.3

| (i)   | State and explain the direction of rotation of the coil as seen from point X.                                                                                               |    |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|       | statement                                                                                                                                                                   |    |
|       | explanation                                                                                                                                                                 |    |
|       |                                                                                                                                                                             | [3 |
| (ii)  | The coil rotates through 90° from the position shown.                                                                                                                       |    |
|       | State what happens to the moment in this position.                                                                                                                          |    |
|       |                                                                                                                                                                             | [1 |
| (iii) | The coil is rotated through 180° from the position shown. By considering the forces the coil, explain how the split-ring commutator enables the motor to turn continuously. |    |
|       |                                                                                                                                                                             |    |
|       |                                                                                                                                                                             | [2 |

[Total: 10]

| <b>17.</b> June/ | 2021/Paper_43/No.9                                                                            |
|------------------|-----------------------------------------------------------------------------------------------|
| (a)              | An X-ray machine requires a supply of 110 kV. The mains electricity supply is 230 V.          |
|                  | transformer is used to supply the correct voltage to the X-ray machine. There are 50 turns of |
|                  | the primary coil of the transformer.                                                          |

|     | 2021/Paper_43/No.9  An X-ray machine requires a supply of 110 kV. The mains electricity supply is 230 V. A transformer is used to supply the correct voltage to the X-ray machine. There are 50 turns on the primary coil of the transformer. |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Calculate the number of turns on the secondary coil.                                                                                                                                                                                          |
|     | number of turns = [2]                                                                                                                                                                                                                         |
| (b) | Draw a labelled diagram of a step-down transformer. On the labels, state a suitable material for each of the components.  [3]  Explain how a transformer operates.                                                                            |
| (c) | Explain how a transformer operator                                                                                                                                                                                                            |
| (C) | Explain how a transformer operates.                                                                                                                                                                                                           |

[Total: 8]

# **18.** March/2021/Paper\_32/No.10

A student uses a laptop computer. The student notices that the cable connecting the power adapter for a laptop to the mains electricity supply is damaged as shown in Fig. 10.1.

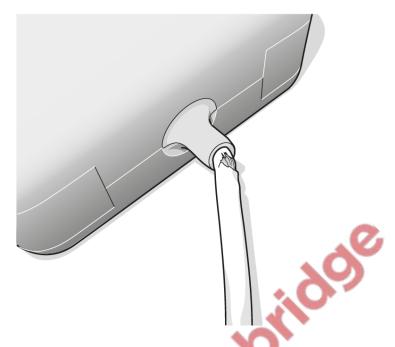



Fig. 10.1

| (a) | State the hazard of using mains equipment with damaged insulation.                     | 1] |
|-----|----------------------------------------------------------------------------------------|----|
| (b) | Describe how a fuse protects a mains electrical appliance.                             |    |
|     | [3                                                                                     |    |
| (c) |                                                                                        | Ī  |
|     | The input (primary) voltage is 120 V.                                                  |    |
|     | The input (primary) coil has 2000 turns and the output (secondary) coil has 200 turns. |    |
|     | Calculate the output (secondary) voltage from the transformer.                         |    |
|     |                                                                                        |    |

| (d) | State the name of the material used in the core of the transformer. |
|-----|---------------------------------------------------------------------|
|     | [1]                                                                 |
|     | [Total: 8]                                                          |

## **19.** March/2021/Paper\_42/No.7

Fig. 7.1 shows a horizontal conducting wire XY between two opposite magnetic poles. Wire XY forms a circuit with an ammeter.

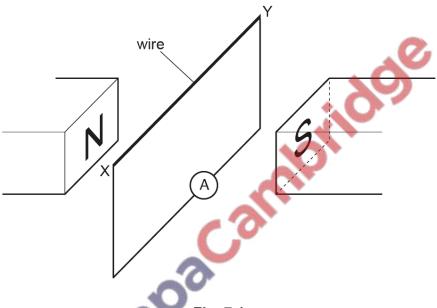



Fig. 7.1

(a) Explain why the reading on the ammeter is zero when the wire XY is not moving.

[11]

**(b)** The wire XY is moved and there is a deflection on the ammeter that indicates there is a current in the wire from X to Y.

On Table 7.1, tick **one** box to indicate the direction of the movement of the wire XY and explain your answer.

Table 7.1

| into page | out of page | to the left | to the right | to the bottom of the page | to the top of the page |
|-----------|-------------|-------------|--------------|---------------------------|------------------------|
|           |             |             |              |                           |                        |

| exp  | lanation                                                     |       |
|------|--------------------------------------------------------------|-------|
|      |                                                              |       |
|      |                                                              |       |
| •••• |                                                              | [3]   |
| Sta  | te what is observed on the ammeter when the wire XY is moved |       |
| (i)  | in the opposite direction to part (b)                        | . [1] |
| (ii) | in the same direction as part (b) but at a greater speed     | . [1] |

[Total: 6]



(c)