<u>Magnetism – 2021 IGCSE 0625</u>

1. June/2021/Paper_11&21/No.27,28

Diagram 1 shows a small compass needle with its poles marked. It is not near any magnetic materials.

Diagram 2 shows a bar magnet with its poles marked. The compass needle is placed at point P.

diagram 1

diagram 2

•_P

In which direction will the N pole of the compass needle point?

- A to the left
- **B** to the right
- C down the page
- **D** up the page

2. June/2021/Paper_11/No.28

Which diagram shows the pattern and direction of the magnetic field lines around a bar magnet?

3. June/2021/Paper_12/No.27

Two metal rods each have a painted end. The painted ends are placed next to the N pole and S pole of a bar magnet in turn.

The rods are made from iron, aluminium or magnetised steel.

rod	placed next to	observation
1	N pole of bar magnet	attracts
1	S pole of bar magnet	attracts
2	N pole of bar magnet	nothing happens
2	S pole of bar magnet	nothing happens

What are rod 1 and rod 2 made from?

	rod 1	rod 2		
Α	magnetised steel	aluminium		
В	iron	magnetised steel		
С	aluminium	iron		
D	iron	aluminium		

4. June/2021/Paper_12&22/No.28

Three piles of small nails, P, Q and R, are placed on a bench below three electromagnets.

One set of nails is made of copper, one of soft iron and one of steel.

Diagram 1 shows the situation when the electromagnets are switched on.

Diagram 2 shows the situation when the electromagnets are then switched off.

diagram 1 the switches are closed

Which row correctly identifies the materials from which the nails are made?

	copper	soft iron	steel
Α	Р	Q	R
В	Р	R	Q
С	Q	Р	R
D	Q	R	Р

5. June/2021/Paper_13&23/No.28

A bar magnet picks up two steel bolts.

Which diagram shows the magnetic poles induced in the bolts?

6. June/2021/Paper_13/No.29

Which diagram shows the magnetic field around a bar magnet?

7. June/2021/Paper_22/No.27

Which method does **not** demagnetise a bar magnet?

- A Heat the bar magnet and place it in the east-west direction to cool.
- **B** Place the bar magnet in the east-west direction and hammer it.
- **C** Place the bar magnet in a coil connected to an a.c. supply and slowly withdraw it.
- **D** Place the bar magnet in a coil connected to a d.c. supply and slowly withdraw it.

8. June/2021/Paper_22/No.29

A magnet is suspended by a cotton thread.

The magnet is displaced then allowed to swing freely until it comes to rest.

Why does the magnet always come to rest pointing in the same direction?

- A because of the interaction between the electric field of the magnet and the electric field of the Earth
- **B** because of the interaction between the electric field of the magnet and the magnetic field of the Earth
- **C** because of the interaction between the magnetic field of the magnet and the gravitational field of the Earth
- **D** because of the interaction between the magnetic field of the magnet and the magnetic field of the Earth

9. March/2021/Paper_12/No.28

A soft-iron bar is not magnetised. It is held close to the N pole of a magnet and then to the S pole of the same magnet.

What will be the result?

	N pole	S pole			
Α	attracts	attracts			
В	attracts	repels			
С	repels	attracts			
D	repels	repels			

10. March/2021/Paper_12&22/No.30,29

Three cores of different metals P, Q and R are placed inside identical coils of wire.

At least one of the metals is non-magnetic.

The cores are held above some iron nails.

The three diagrams show what happens when there is a current in the coils.

The three diagrams below show what happens when the current is then switched off.

Which core metals are magnetic?

A Ponly B Ronly C Pand Q D Q and R

11. March/2021/Paper_22/No.28

Three methods to demagnetise a magnet are suggested. The magnet is in an east-west direction.

- 1 hitting the magnet repeatedly with a hammer
- 2 heating the magnet until red hot
- 3 withdrawing the magnet from a coil which has a direct current (d.c.) in it

Which methods demagnetise the magnet?

A 1, 2 and 3 **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only

12. June/2021/Paper_31/No.9(a) The box lists four materials.

		aluminium	iron	plastic	wood	
		s from the box to and may be used once	. ,	` '	l.	
	(i) State	e all materials that a	re electrical ir	nsulators.		
						[1]
	(ii) State	e one example of a r	nagnetic mat	erial.		
						[1]
(b)	Fig. 9.1 s	hows two magnets,	P and Q, which	ch are repelling	each other.	
		N magnet P		maq	net Q	
		C	Fig.	10		
	On magn	et P, the N pole is lal	belled N.			
	On Fig. 9	.1, label the other po	le on magne	t P and both po	les on magnet C	Q. [1]
(c)		antage that electrom can easily be altered		, compared with	permanent ma	gnets, is that thei
	State one	e other advantage of	an electroma	agnet compared	with a permane	nt magnet.
						[1]

(d) A student wants to make the strongest electromagnet possible.

Indicate which properties produce the **strongest** electromagnet.

Tick (✓) one box in each list.

number of turns in the coil	material in the core	size of current in the coil		
200 turns	air	20 mA		
100 turns	iron	0.5A		
50 turns	plastic	3.0A		
		[3]		

[Total: 7]

13. June/2021/Paper_42/No.7

(a) Fig. 7.1 shows two magnets and the gap between the N pole of one magnet and the S pole of the other magnet.

On Fig. 7.1, draw three lines to show the pattern and direction of the magnetic field in the [2] gap.

(b) (i) Fig. 7.2 is a repeat of Fig. 7.1 showing the two magnets.

On Fig. 7.2, draw the position of a plotting compass needle when it comes to rest in the gap between the N pole and the S pole.

Fig. 7.2

[1]

	(ii)	Explain why the needle comes to rest in this position.
		[2]
(c)	Des	scribe a method of demagnetising a bar magnet.
		10 °
		[2]
		[Total: 7]

14. March/2021/Paper_32/No.8

(a) Fig. 8.1 shows the magnetic field pattern around a bar magnet.

Fig. 8.1

(i)	Describe an experiment to identify the pattern and direction	on o	f ma	gnetic field	llines	around
	a bar magnet as shown in Fig. 8.1.	Z		,		

	You may add to Fig. 8.1 as part of your answer.
	[3]
(ii)	State a material that can be used to make a permanent bar magnet.
	[1]

(b) A student uses two bar magnets to create a uniform magnetic field. He places a current-carrying wire at right angles to the magnetic field, as shown in Fig. 8.2.

Fig. 8.2

There is a force on the current-carrying wire.

(i)	The student wants to reverse the direction of the force on the wire.
	State one change that reverses the direction of the force on the wire.
	[1]
(::)	
(ii)	The student increases the separation of the poles of the permanent magnets.
	State and explain how increasing the separation affects the force on the current-carrying wire.
	[2]

[Total: 7]