1. June/2021/Paper_11,12,13,21,22&23/No.37,38

The charge on a proton is e.

What is the charge on an electron and what is the charge on a neutron?

	electron neutron		
Α	e e		
В	е	0	
С	-е	-е	
D	-е	0	

2. June/2021/Paper_11/No.38

The nuclide notation of the isotope strontium-90 is ${}^{90}_{38}$ Sr.

Which statement is correct?

A A nucleus of strontium-90 has 38 neutrons.

- A nucleus of strontium-90 has 52 neutrons. В
- C A nucleus of strontium-90 has 90 electrons.
- **D** A nucleus of strontium-90 has 90 neutrons.

3. June/2021/Paper 11/No.39

Which statement about α -particles and γ -rays is correct?

- α -particles are a form of electromagnetic radiation.
- α -particles penetrate materials more easily than γ -rays.
- The emission of an α -particle produces a nucleus of a different element. C
- D γ -rays are more ionising than α -particles.

4. June/2021/Paper_11,12,13.21,22&23/No.40

The graph shows the activity of a radioactive source over a period of time.

What is the half-life of the source?

- A 1.0 minute
- B 2.0 minutes
- C 2.5 minutes
- 4.0 minutes

5. June/2021/Paper_12/No.38

The proton numbers and nucleon numbers of four nuclides are shown.

²³²Th

²³⁸0

²³⁹₉₄Pu

Which statement is correct?

A Plutonium (Pu) contains one more proton then uranium (U).

B Thorium (Th) contains one more neutron than radium (Ra).

C Thorium (Th) contains one more proton than radium (Ra).

D Uranium (U) contains one more neutron than plutonium (Pu).

6. June/2021/Paper_12/No.39

A radioactive atom decays by emission of a β -particle.

Which row is correct?

	what decays	what happens to the atom
Α	the nucleus of the atom	it becomes a different element
В	the nucleus of the atom	it becomes a lighter version of the same element
С	C the outer layers of the atom it becomes a different element	
D	the outer layers of the atom	it becomes a lighter version of the same element

7. June/2021/Paper_13/No.38

The nuclide notation for sodium-23 is $^{23}_{11}Na$.

How many protons are in a nucleus of sodium-23?

A 11

- **B** 12
- **C** 23
- **D** 34

8. June/2021/Paper_13/No.39

A student is investigating the count rate of a radioactive substance.

How must he adjust his reading for the background count?

- A Add the background count to his reading.
- **B** Ignore the background count as it will not affect his reading.
- **C** Subtract the background count from his reading.
- D Take repeat readings to eliminate the background count.

9. June/2021/Paper_21/No.38

Four students are asked to comment on the processes of nuclear fission and nuclear fusion.

Their comments are recorded in the table.

Which row is correct?

	fission	fusion
Α	energy is absorbed	a large unstable nucleus splits
В	a large unstable nucleus splits	energy is absorbed
С	two light nuclei join	energy is absorbed
D	energy is released	two light nuclei join

10. June/2021/Paper_21/No.39

Radon $^{219}_{86}Rn$ decays by emitting an α -particle.

Which nuclide is formed in this decay?

a ²¹⁵₈₄Pc

в ²²³Ra

c ²¹⁹₈₇Fr

3

 $D = {}^{219}_{85}A$

11. June/2021/Paper_22/No.37

Which row correctly states how nuclei behave during nuclear fission and during nuclear fusion?

	fission	fusion	
Α	nuclei join together	nuclei join together	
В	nuclei join together	nuclei split apart	
С	nuclei split apart	nuclei join together	
D	nuclei split apart	nuclei split apart	

12. June/2021/Paper_22/No.39

Some radioactive nuclei decay to give new nuclei which are also radioactive. Part of a series of decays is shown.

$$^{238}_{92}U$$
 \rightarrow $^{234}_{90}Th$ \rightarrow $^{234}_{91}Pa$ \rightarrow $^{234}_{92}U$ \rightarrow $^{230}_{90}Th$ \rightarrow $^{226}_{88}Ra$

How many decays involve the emission of a β -particle?

- **A** 1
- **B** 2
- **C** (

D 5

13. June/2021/Paper_23/No.38

The diagram shows α -particles incident on a thin metal foil.

How does the motion of these particles give evidence for the nuclear atom?

- A Most particles passing through with minimal deflection shows that the atom is mostly empty space.
- **B** Most particles passing through with minimal deflection shows that the mass of the atom is uniformly distributed.
- C Large deflections of some particles shows that the atom is mostly empty space.
- **D** Large deflections of some particles shows that the charge in the atom is uniformly distributed.

4

14. June/2021/Paper_23/No.39

Radium-226, $^{226}_{88}$ Ra , is an α -emitter.

It is implanted inside cancerous tumours.

It is safe to use as it kills the cancerous cells, but not the healthy ones surrounding the tumour.

Which properties of α -particles, compared to other emissions, enable this use of radium-226?

	$\begin{array}{ll} \text{ionising effect} & \text{penetration} \\ \text{of α-particles} & \text{of α-particles} \end{array}$	
Α	high	high
В	high	low
С	low	high
D	low	low

15. March/2021/Paper_12&22/No.37,38

Three students are describing the structure of an atom.

- student 1 All the positively charged particles are in the nucleus.
- student 2 Positive electrons are in the nucleus.
- student 3 Negative electrons orbit around the nucleus.

Which students are making a correct statement?

- **A** 1, 2 and 3
- B 1 and 2 only
- C 1 and 3 only
- **D** 2 and 3 only

ridge

16. March/2021/Paper_12/No.38

The symbol below describes a nuclide.

⁹Be

Which row is correct?

	proton nucleon number (Z)	
Α	4	5
В	4	9
С	9	4
D	9	5

17. March/2021/Paper_12/No.39

The diagram shows a radioactivity experiment.

When a piece of paper is used as the absorber, the count rate drops to the background count ambildoe rate.

Which radiation is the source emitting?

- α -radiation only Α
- β-radiation only В
- γ -radiation only
- α -radiation, β -radiation and γ -radiation

18. March/2021/Paper_12/No.40

The graph shows how the count rate from a radioactive sample changes with time.

What is the half-life for this sample?

- 90s Α
- 120 s В
- 200s C
- 400 s

19. March/2021/Paper_22/No.39

When alpha particles are incident on a thin metal foil, most of them pass through undeviated.

What does this observation reveal about the nature of the atom?

- A The atom has a dense nucleus.
- **B** The atom is mostly empty space.
- **C** The atom is very small.
- **D** The nucleus of the atom is positively charged.

20. March/2021/Paper 22/No.40

A laboratory worker measures the count rate from a radioactive source. He records his results in a table.

time minutes	count rate counts/s	
0	100	
1.0	73	
2.0	54	
3.0	41	
4.0	31	

The average background radiation in the laboratory is 8 counts per second.

What is the half-life of the source?

- A 1.5 minutes
- B 2.0 minutes
- C 3.0 minutes
- **D** 4.0 minutes

21. June/2021/Paper_31/No.12

(a) Table 12.1 describes four nuclides.

Table 12.1

name of nuclide	plutonium-238	thorium-234	uranium-235	uranium-238
nuclide notation	²³⁸ ₉₄ Pu	²³⁴ ₉₀ Th	²³⁵ ₉₂ U	²³⁸ U

	(i)	State which two nuclides have the same number of protons.
		[1]
	(ii)	State which two nuclides have the same number of nucleons.
	(iii)	State which one of the four nuclides has the most electrons orbiting when it is in a neutral atom.
		[1]
(b)		rium-234 has a half-life of 24 days. A sample of radioactive material contains 40 mg of rium-234.
	Cal	culate the mass of thorium-234 remaining after 72 days.
		Palpa
		mass of thorium-234 remaining = mg [3]
		[Total: 6]

22. June/2021/Paper_32/No.11

(a) The nuclide notation ${}_{7}^{A}X$ describes the nucleus of an atom.

Draw a line from each symbol to the correct description of the symbol.

A neutron number

The proton number and some symbol description

A neutron number nucleon number

The proton number and some symbol description number and some symbol number and sy

[2]

(b) The activity of a sample of a radioactive nuclide is measured in June of each year. In June 2004 the activity was 80 000 counts/s. In June 2014 the activity was 20 000 counts/s.

(i) Show that the half-life of the nuclide is 5 years.

[3]

(ii) Determine the year when the activity of the sample was 10 000 counts/s.

year =[2]

[Total: 7]

23. June/2021/Paper_33/No.11

(a) A nucleus of nitrogen-13 has the nuclide notation: ${}^{13}_{7}$ N.

Determine:

- (i) the number of protons in one nucleus of nitrogen-13 [1]
- (ii) the number of neutrons in one nucleus of nitrogen-13[1]
- (iii) the number of electrons in one neutral atom of nitrogen-13.[1]
- **(b)** Fig. 11.1 shows a counter measuring the radioactivity of a sample of nitrogen-13.

Fig. 11.1

The counter shows the count rate in counts per minute.

Table 11.1 shows the count rate every 5 minutes

Table 11.1

time/min	count rate due to nitrogen-13 counts/min
0	300
5	212
10	150
15	106
20	75
25	53

Calculate the half-life of nitrogen-13 using information from Table 11.1.

half-life of nitrogen-13 = min [2]

[Total: 5]

The	nuclide notation for hydrogen-1 is 1 H.
(a)	Write down the symbol, using nuclide notation, for:
	hydrogen-2
	hydrogen-3[1]
(b)	In a fusion reactor, a nucleus of hydrogen-2 and a nucleus of hydrogen-3 undergo fusion.
	(i) State what is meant by <i>nuclear fusion</i> .
	[2]
	(ii) The fusion reaction produces a free neutron and one other particle.
	Write down, using nuclide notation, the equation that represents this reaction.
	[3]
(c)	Nuclear fusion in the Sun is the source of most but not all of the resources that are used to generate electrical energy on Earth.
	State two resources for which nuclear fusion in the Sun is not the source.
	1
	2

There are three naturally occurring isotopes of hydrogen: hydrogen-1, hydrogen-2 and hydrogen-3.

24. June/2021/Paper_41/No.9

[Total: 8]

25. June/2021/Paper_42/No.8

- (a) Two identical radioactive sources emit α -particles and γ -rays into two vacuum tubes.
 - (i) Fig. 8.1 shows two electrically charged plates on either side of one of the vacuum tubes.

Fig. 8.1

Write the symbol α **once** in Table 8.1 to indicate any deflection of the α -particles.

Write the symbol γ **once** in Table 8.1 to indicate any deflection of the γ -rays.

Table 8.1

into page	out of page no deflection	towards bottom of page	towards top of page
	Ro		

[2]

(ii) Fig. 8.2 shows the poles of a very strong magnet on either side of the other vacuum tube.

Fig. 8.2

Write the symbol α **once** in Table 8.2 to indicate any deflection of the α -particles.

Write the symbol γ **once** in Table 8.2 to indicate any deflection of the γ -rays.

Table 8.2

into page	out of page	no deflection	towards bottom of page	towards top of page
	00			

[2]

26. June/2021/Paper_42/No.11

(a) A student investigates a radioactive substance in a laboratory.

Fig. 11.1 is a graph showing the count rate detected as the substance decays for 7.5 minutes.

Fig. 11.1

The background radiation is 20 counts/min.

(i) Determine the half-life of the substance.

(ii) Calculate the count rate detected at time = 9.6 minutes.

(b) The substance emits α -particles and γ -rays. The student suggests that it is safe to store the substance in a plastic container of thickness 2 mm.

State and explain whether the student's suggestion is correct.

explanation [3]

[Total: 8]

27. June/2021/Paper_43/No.10

(a) Fig. 10.1 shows a beam of radiation in a vacuum. The beam contains α -particles, β -particles and γ -rays.

Fig. 10.1

The beam enters a region where there is a strong, uniform magnetic field. The direction of the magnetic field is out of the page.

On Fig. 10.1, mark and label the paths through the magnetic field of:

(i) α-particles (label this path α)
(ii) β-particles (label this path β)
(iii) γ-rays (label this path γ).
(b) Radioactive sources have many uses in medicine.
State two safety precautions which hospital staff take when working with γ-ray sources.

 1.
 [2]

	iodine-131 contains 53 protons and 78 neutrons. The symbol for iodine is I.			
(i)	Use nuclide notation to show this isotope of iodine.			
	[1]			
(ii)	lodine-131 emits γ -radiation. It has a half-life of 8 hours.			
	Explain why this emission and this half-life make iodine-131 a suitable material for a tracer in medical diagnosis.			
	[2]			
	[_j			
	Palpaccalifity [Total: 9]			
	(i)			

28. March/2021/Paper_32/No.11

Carbon-12 is a stable isotope of carbon. Its nuclide notation is shown in Fig. 11.1.

Carbon-14 is an unstable isotope of carbon. Its nuclide notation is shown in Fig. 11.2.

¹² C	¹⁴ ₆ C
Fig. 11.1	Fig. 11.2

(a) Determine the numbers of electrons, protons and neutrons in an atom of carbon-12 and the numbers of electrons, protons and neutrons in an atom of carbon-14.

Complete Table 11.1.

Table 11.1

	carbon-12	carbon-14
number of electrons		10.5
number of protons	<u> </u>	
number of neutrons	~	

[3]

(b) Fig. 11.3 shows the decay curve for a sample of carbon-14.

Fig. 11.3

Use the graph to determine the half-life of carbon-14.

29.

	h/2021/Paper_42/No.10 State the proton number, nucleon number and the value of the charge on an α -particle.
	proton number
	nucleon number
	charge[3]
(b)	A nucleus of strontium-90 consists of 38 protons and 52 neutrons. Strontium-90 is radioactive and decays by β -emission to an isotope of yttrium. The symbol for strontium is Sr and the symbol for yttrium is Y. Write down the nuclide equation of this decay.
(c)	[3] The half-life of radon-220 is 56 s. A sample of radon-220 is in a container. After 112 s the mass of radon-220 is 9.2 mg.
	Calculate the mass of the original sample.
	mass =[2] [Total: 8]