Sound – 2021 IGCSE 0625

1. June/2021/Paper_11,12&13/No.26

The diagrams represent the waves produced by four sources of sound. The scales are the same for all the diagrams.

Which sound has the highest frequency?

2. June/2021/Paper_12/No.25

Sound is a transfer of energy from an oscillating source.

Which statement describes how sound energy is transferred?

- A a longitudinal wave with the oscillation parallel to the direction in which energy is transferred
- **B** a longitudinal wave with the oscillation perpendicular to the direction in which energy is transferred
- **C** a transverse wave with the oscillation parallel to the direction in which energy is transferred
- **D** a transverse wave with the oscillation perpendicular to the direction in which energy is transferred

3. June/2021/Paper 13/No.27

Which description of ultrasound is correct?

- A longitudinal waves with a frequency greater than 20000 Hz
- **B** longitudinal waves with a frequency less than 20 Hz
- C transverse waves with a frequency greater than 20 000 Hz
- **D** transverse waves with a frequency less than 20 Hz

4. June/2021/Paper 21/No.26

A sound wave is travelling outwards from a loudspeaker into the surrounding air.

Here are three statements.

- 1 The air pressure is lower at a rarefaction compared with undisturbed air.
- 2 The density of the air is less at a compression compared with undisturbed air.
- 3 The distance from a compression to a rarefaction equals half a wavelength.

Which statements about the sound wave are correct?

A 1 and 2 only **B** 1 and 3 only **C** 2 and 3 only **D** 1, 2 and 3

5. June/2021/Paper_21,22&23/No.27,26

The sound from a loudspeaker must pass through two materials to reach a microphone.

Which combination of materials gives the shortest time for the sound to reach the microphone?

	material 1	material 2		
Α	air	hydrogen		
В	air	water		
С	copper	aluminium		
D	water	oil		

6. June/2021/Paper_23/No.26

The diagram shows a model of a sound wave passing through air in an open tube.

What is the region Q?

- A a compression which is a region of high pressure
- B a compression which is a region of low pressure
- C a rarefaction which is a region of high pressure
- **D** a rarefaction which is a region of low pressure

7. March/2021/Paper_12/No.26

Which process causes a sound wave to produce an echo?

- A diffraction
- **B** dispersion
- **C** reflection
- **D** refraction

8. March/2021/Paper_12/No.27

A quiet sound is produced by a loudspeaker. The pitch of the sound remains constant but the loudness of the sound is increased.

Which property of the sound wave is increased?

- A amplitude
- **B** frequency
- C speed
- **D** wavelength

9. March/2021/Paper_22/No.20

What is the approximate wavelength in air of the highest frequency sound that can be heard by a normal healthy person?

- **A** 0.02 m
- **B** 60 m
- C 20000 m
- **D** 7000000 m

Moridoe

10. March/2021/Paper_22/No.26

The diagram represents a sound wave.

What are the names of the parts of the sound wave labelled X and Y?

	X	Y	
Α	amplitude	wavelength	
В	compression	rarefaction	
С	rarefaction	amplitude	
D	wavelength	compression	

11. March/2021/Paper_22/No.27

The speed of sound is different in different states of matter.

The speed of sound in liquid water is 1500 m/s.

Which row correctly compares the speed of sound in ice and the speed of sound in water vapour with the speed of sound in water?

12. June/2021/Paper_31/No.8

(a) A loudspeaker is producing a sound.

Choose words from the box to complete the sentences about sound.

amplitude	frequency	speed	wavelength

- (b) Two students determine the speed of sound in air.

 The students stand together, 80 m from a large brick wall as shown in Fig. 8.1.

Fig. 8.1 (not to scale)

One student shouts and as he shouts the other student starts a stop-watch. She stops the stop-watch when she hears the echo of the shout. The reading on the stop-watch is 0.56s.

(i) State the **total** distance the sound travels during the 0.56 s.

(ii) Calculate the speed of sound in air using the measurements given in part (b).

(iii)	The students' value for the speed of sound is not accurate.				
	Suggest two ways of improving the students' experiment.				
	1				
	2				
	[2]				
13. June/2021/					
Fig. 6.	I is a full-scale diagram that represents a sound wave travelling in air.				
	direction of travel Fig. 6.1				
	n Fig. 6.1, mark two points, each at the centre of a different compression. Label both of the ints C.				
	ne speed of sound in air is 330 m/s.				
	easure the diagram and determine the frequency of the sound.				
	fraguency =				
	frequency =[3]				

(c) The wave reaches a barrier. Fig. 6.2 shows the wave passing through a gap in the barrier.

Fig. 6.2

The frequency of the wave is increased to a value many times greater than the value obtained in **(b)**.

Describe and explain **two** ways in which a diagram representing the wave with the greater frequency differs from Fig. 6.2.

1.	 	 	 	
2.				
••••	 	 	 •••••	 [3]

[Total: 7]

14. March/2021/Paper_42/No.5

(a) State the name of the reflection of a sound wave or ultrasound wave.

.....[1]

(b) Fig. 5.1 shows an ultrasound wave being used to scan an internal organ of a human body.

Fig. 5.1

The ultrasound wave has a frequency of 2.0 MHz and passes through human tissue at a speed of 1500 m/s.

Calculate the wavelength of the ultrasound wave in human tissue.

wavelength =[3]

(c) Fig. 5.2 shows crests of a wave from a point source S approaching a straight barrier.

Fig. 5.2

- (i) On Fig. 5.2, indicate and label one wavelength.
- (ii) On Fig. 5.2, draw three crests of the wave reflected from the barrier.

[3]

[Total: 7]

