<u>Forces – 2021 IGCSE 0625</u>

1. Nov/2021/QPaper_21,22&23/No.6

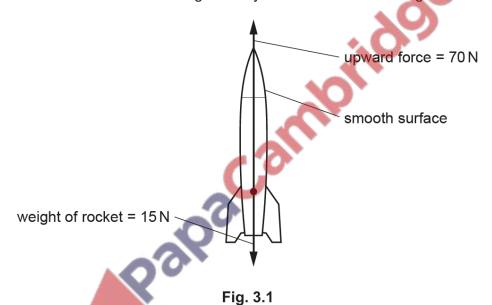
A spring, which obeys Hooke's law, has an unstretched length of 10 cm.

A load of 20 N is suspended from the spring.

The new length of the spring is 36 cm.

What is the spring constant *k* of the spring?

A 0.56 N/cm


B 0.77 N/cm

C 1.3 N/cm

D 1.8 N/cm

2. Nov/2021/QPaper_32/No.3

Fig. 3.1 shows the vertical forces acting on a toy rocket as it leaves the ground.

(a) Calculate the size of the resultant vertical force on the rocket.

[Total: 4]

3. Nov/2021/QPaper_33/No.3

Fig. 3.1 shows the horizontal forces acting on a skateboarder.

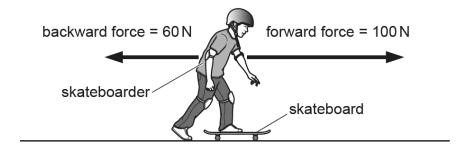


Fig. 3.1

(a) Calculate the resultant force acting on the skateboarder.

	resultant force =	N
	direction =	
		[2]
(b)	Describe the effect of the resultant force in (a) on the motion of the skateboarder.	
		. [1]
(c)	The skateboarder is moving along a horizontal path.	
	The backward force is 100 N. The forward force is 100 N.	
	Describe the motion of the skateboarder.	
		. [1]
		. [.]
	Tota	al: 41

4. Nov/2021/QPaper_41/No.1

Some physical quantities are scalars and other physical quantities are vectors.

(a) State how a vector quantity differs from a scalar quantity.

 • • • • •
[1]

(b) Circle the vector quantities in the list.

acceleration energy mass momentum temperature time speed velocity
[2]

- (c) A microphone in a recording studio has a mass of 0.55 kg and a weight W.
 - (i) Calculate W.

(ii) The microphone is suspended from the ceiling by a cord attached to a small ring. Fig. 1.1 shows the microphone pulled to one side and kept stationary by a horizontal thread.

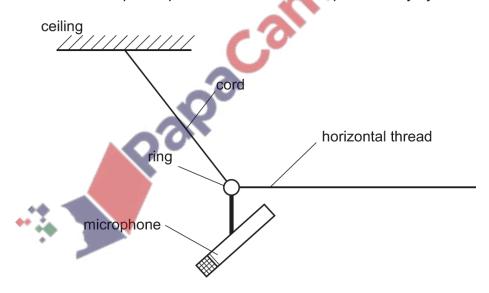


Fig. 1.1 (not to scale)

The tension *T* in the horizontal thread is 8.1 N.

Determine graphically the magnitude and the direction, relative to the vertical, of the resultant of W and T. Use a scale of 1.0 cm to 1.0 N or greater.

	magnitude of resultant =
	direction of resultant = relative to vertical [3]
(iii)	State and explain how the magnitude and direction of the resultant in (c)(ii) compares with the force on the ring due to the tension in the cord.
	[2]
	[Total: 9]

5.	Nov/2021/QPaper_42/No			
	(a)	State Hooke's law.		

.....

.....[1]

(b) Fig. 2.1 shows the extension—load graph for a spring.

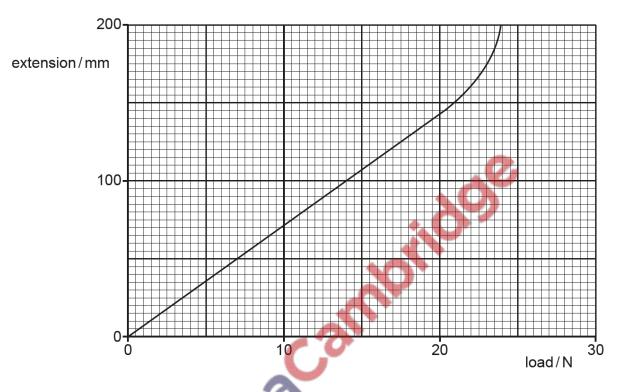


Fig. 2.1

(i) On Fig. 2.1, mark and label the region where the spring obeys Hooke's law. [1]

(ii) Calculate the spring constant *k*.

(iii) The original length of the spring is 120 mm.

Calculate the length of the spring when a load of 8.5 N is applied to the spring.

(c) The weight of an object is 4.0 N on a planet where the acceleration of free fall is 8.7 m/s².Calculate the mass of the object.

mass =[2]

[Total: 8]

