<u>Turning Effect of Force – 2022 June IGCSE 0625</u>

1. June/2022/Paper_11/No.7

A beam is pivoted at one end, as shown.

The beam weighs 6.0 N and its weight acts at a point X 40 cm from the pivot.

A force of 4.0 N is applied to the beam causing it to balance horizontally.

In which direction and where is the 4.0 N force applied?

- A vertically downwards at 20 cm to the left of X
- **B** vertically downwards at 20 cm to the right of X
- C vertically upwards at 20 cm to the left of X
- **D** vertically upwards at 20 cm to the right of X

2. June/2022/Paper 12/No.7

A beam is pivoted at one end, as shown

The beam weighs 6.0 N and its weight acts at a point X 40 cm from the pivot.

A force of 4.0 N is applied to the beam causing it to balance horizontally.

In which direction and where is the 4.0 N force applied?

- A vertically downwards at 20 cm to the left of X
- **B** vertically downwards at 20 cm to the right of X
- C vertically upwards at 20 cm to the left of X
- **D** vertically upwards at 20 cm to the right of X

3. June/2022/Paper_12/No.8

What are the conditions for an object to be in equilibrium?

	forces on object	moment on object
Α	no resultant force	no resultant moment
В	no resultant force	resultant moment
С	resultant force	no resultant moment
D	resultant force	resultant moment

4. June/2022/Paper_13/No.6

A beam is pivoted at one end, as shown.

cambridge

The beam weighs 6.0 N and its weight acts at a point X 40 cm from the pivot.

A force of 4.0 N is applied to the beam causing it to balance horizontally.

In which direction and where is the 4.0 N force applied?

- A vertically downwards at 20 cm to the left of X
- **B** vertically downwards at 20 cm to the right of X
- C vertically upwards at 20 cm to the left of X
- **D** vertically upwards at 20 cm to the right of X

5. June/2022/Paper_13/No.7

The diagram shows two identical bars of negligible weight. All the forces acting on each bar are marked.

Which bars are in equilibrium?

- A bar 1 and bar 2
- B bar 1 only
- bar 2 only
- neither bar 1 nor bar 2

6. June/2022/Paper_13/No.8

Palpa Califidate

Rapa Califitation

Rapa Califitat Four objects have different base areas and their centres of mass are in different positions.

Which object is most stable?

	base area	position of centre of mass
Α	large	high
В	large	low
С	small	high
D	small	low

7. June/2022/Paper_21/No.7

A beam is pivoted at one end, as shown.

The beam weighs 6.0 N and its weight acts at a point X 40 cm from the pivot.

A force of 4.0 N is applied to the beam causing it to balance horizontally.

In which direction and where is the 4.0 N force applied?

- A vertically downwards at 20 cm to the left of X
- B vertically downwards at 20 cm to the right of X
- C vertically upwards at 20 cm to the left of X
- **D** vertically upwards at 20 cm to the right of X

8. June/2022/Paper_22/No.7

A beam is pivoted at one end, as shown.

The beam weighs 6.0 N and its weight acts at a point X 40 cm from the pivot.

A force of 4.0 N is applied to the beam causing it to balance horizontally.

In which direction and where is the 4.0 N force applied?

- A vertically downwards at 20 cm to the left of X
- **B** vertically downwards at 20 cm to the right of X
- **C** vertically upwards at 20 cm to the left of X
- **D** vertically upwards at 20 cm to the right of X

9. June/2022/Paper_23/No.7

A beam is pivoted at one end, as shown.

The beam weighs 6.0 N and its weight acts at a point X 40 cm from the pivot.

A force of 4.0 N is applied to the beam causing it to balance horizontally.

In which direction and where is the 4.0 N force applied?

- A vertically downwards at 20 cm to the left of X
- B vertically downwards at 20 cm to the right of X
- C vertically upwards at 20 cm to the left of X
- **D** vertically upwards at 20 cm to the right of X

10. June/2022/Paper_31/No.4(b)

(b) Fig. 4.3 shows the force on the pulley from the load M.

The weight of load M is 2.5 N and the weight acts at a distance of 20 cm from the pivot of the pulley wheel.

Calculate the moment of the weight of load M about the pivot.

moment = Ncm [3]

11. June/2022/Paper_33/No.3(b)

(b) Fig. 3.2 shows the handle used to open and close a cupboard door on the aeroplane.

Fig. 3.2 (not to scale)

A force of 60 N acts at a distance of 20 cm from the pivot of the handle.

Calculate the moment of the 60 N force about the pivot.