<u>Motion – 2022 November IGCSE 0625</u>

1. Nov/2022/Paper_11/No.2

A car starts from rest.

The table shows the readings from its speedometer every 10 s.

time/s	0	10	20	30	40	50	60
speed m/s	0	4	8	12	12	12	12

Which row describes the car's motion in the first 30 seconds and in the last 30 seconds?

	motion during first 30 s	motion during last 30 s
Α	non-zero acceleration	at rest
В	zero acceleration	constant speed
С	zero acceleration	at rest
D	non-zero acceleration	constant speed

2. Nov/2022/Paper_12,22/No.2

The diagrams show speed-time graphs for four different bodies moving for 6.0 s.

Which body travelled the least distance?

4.0

2.0

2.0

4.0

time/s

6.0

В

4.0

time/s

6.0

3. Nov/2022/Paper_13,23/No.2

The velocity-time graph for a car is shown.

What is the distance travelled by the car in 35 s?

- **A** 250 m
- **B** 350 m
- **C** 450 m
- D 700 mi

4. Nov/2022/Paper_21/No.2

A car starts from rest.

The table shows the readings from its speedometer every 10 s.

time/s	0	10	20	30	40	50	60
speed m/s	0	4	8	12	12	12	12

Which row describes the car's motion in the first 30 seconds and in the last 30 seconds?

	motion during first 30 s	motion during last 30 s
Α	non-zero acceleration	at rest
В	zero acceleration	constant speed
С	zero acceleration	at rest
D	non-zero acceleration	constant speed

Fig. 2.1 shows the horizontal forces acting on a car.

Fig. 2.1 (not to scale)

(a) Calculate the resultant horizontal force on the car.

size of force =		Ν
direction	<u>,0</u>	
		3]

(b) A student uses a digital stop-watch to measure the time for the car to travel 100 m.

Fig. 2.2 shows the time reading on the stop-watch.

Fig. 2.2

(i) Using the information in Fig. 2.2, state the time taken to travel 100 m.

(ii) The car takes 12.8 s to travel the next 200 m.

Calculate the average speed of the car for this 200 m.

(c) Fig. 2.3 shows the speed-time graph for another car.

Fig. 2.3

Calculate the distance travelled by this car between time = 2.0 s and time = 6.0 s.

[Total: 10]

6. Nov/2022/Paper_32/No.1(a)(a) Using the information from Fig. 1.3:				
		(i)	Describe the vertical motion of the skydiver between time = 0 and time = 20 s.	
			[1]	
		(ii)	Determine the maximum vertical speed of the skydiver.	
			maximum speed = m/s [1]	
		(iii)	Determine the point, A, B, C, D or E, at which the skydiver opens her parachute.	
			[1]	
		(iv)	Determine the distance the skydiver falls between time = 50 s and time = 80 s.	
			idde	
			distance =	

7. Nov/2022/Paper_33/No.1

Fig. 1.1 shows a tram. Trams carry passengers from one place to another.

Fig. 1.1

A tram travels from A to E, stopping at B, C and D on the way. Fig. 1.2 shows the speed–time graph for this tram journey.

Fig. 1.2

(a) (i) Determine the time between the tram leaving A and arriving at C.

(ii) Determine the maximum speed of the tram during the journey from A to E.

(iii)	The tram decelerates as it approaches each stop. Use information from Fig. 1.2 to identify the greatest deceleration. Give a reason for your answer.
	Complete the sentence.
	The greatest deceleration occurs as the tram approaches
	reason
	[2]
	e total distance between A and E is 5200 m. e tram takes 1380 s to travel from A to E.
Ca	Iculate the average speed of the tram between A and E.
	average speed =m/s [3] [Total: 7]

8. Nov/2022/Paper_33/No.1(a)

An aeroplane accelerates along a horizontal runway before take-off. The aeroplane accelerates for 35 s. The speed of the aeroplane when it takes off is 72 m/s.

Fig. 1.1 shows how the speed of the aeroplane varies between time t = 0 and t = 35 s.

Fig. 1.1

[1