Sound – 2022 November IGCSE 0625

1. Nov/2022/Paper_11/No.24

An observer stands at the finish line of a 100 m race. He wants to time the winner's run. He starts his stop-watch as soon as he sees the smoke from the starting gun instead of when he hears the bang.

What is the reason for doing this?

- A Light travels much faster than sound.
- B There is a risk he might respond to an echo from a wall.
- C Humans react slower to sound than to light.
- D Humans react more quickly to sound than to light.

2. Nov/2022/Paper 12,13,23/No.24

A 100 m race is started by firing a gun. The gun makes a bang and a puff of smoke at the same time.

When does the finishing judge see the smoke and when does he hear the bang?

	sees the smoke	hears the bang
Α	almost immediately	almost immediately
В	almost immediately	after about 0.3 s
С	after about 0.3 s	almost immediately
D	after about 0.3 s	after about 0.3 s

3. Nov/2022/Paper_21/No.22

The speed of sound in air is 330 m/s.

How do the speeds of sound in concrete and water compare with this speed?

	speed in concrete	speed in water
Α	greater	greater
В	greater	less
С	less	greater
D	less	less

4. Nov/2022/Paper_21/No.24

An observer stands at the finish line of a 100 m race. He wants to time the winner's run. He starts his stop-watch as soon as he sees the smoke from the starting gun instead of when he hears the bang.

What is the reason for doing this?

- A Light travels much faster than sound.
- B There is a risk he might respond to an echo from a wall.
- C Humans react slower to sound than to light.
- D Humans react more quickly to sound than to light.

5. Nov/2022/Paper 22/No.17

A sound wave travels from air into water.

Which row describes what happens to the frequency and the wavelength of the wave?

	frequency	wavelength
Α	decreases	increases
В	decreases	stays the same
С	stays the same	decreases
D	stays the same	increases

6. Nov/2022/Paper_22,23/No.22

The diagram shows the air molecules in part of a sound wave at a particular moment in time.

Which statement is not correct?

- Earlier, there was compression at X.
- Later, there will be a rarefaction at X.
- С This part of the wave is travelling horizontally across the page.
- D This part of the wave is travelling towards the top of the page.

7. Nov/2022/Paper_33/No.7

Two students, A and B, determine the speed of sound.

They are standing side by side at a distance of 520 m from a wall, as shown in Fig. 7.1.

Fig. 7.1

Student A makes a loud sound by banging two blocks of wood together once. A short time later, both students hear the sound reflected from the wall.

(a) (i) S	State the	term	for the	reflected	sound.
-----------	-----------	------	---------	-----------	--------

.....[1]

(ii) Table 7.1 lists properties of a sound wave. Compare the properties of the original sound and the reflected sound. For each property, place a tick (✓) in one column.

The first property is done for you.

Table 7.1

property	same	different
speed	✓	
wavelength		
loudness		
frequency		
amplitude		
longitudinal		

[3]

(b)	Stu	Student B measures the time between the original sound and the reflected sound.		
	(i)	Suggest a suitable device for measuring the time interval between hearing the original sound and hearing the reflected sound.		
		[1]		
	(ii)	The time interval between hearing the original sound and hearing the reflected sound is 3.1s. Use information shown in Fig. 7.1 to calculate the speed of sound.		
		speed of sound =m/s [3] [Total: 8]		