<u>Momentum – 2023 IGCSE Physics 0625</u>

1. Nov/2023/Paper_ 0625/21/No.7

A sphere X collides head on with a second identical sphere Y which is stationary.

The mass of each sphere is 0.15 kg.

Sphere X is travelling at a velocity of $2.0\,\mathrm{m/s}$ before the collision and produces an impulse of $0.21\,\mathrm{N}\,\mathrm{s}$ on sphere Y.

What is the velocity of sphere X after collision?

- A 0.60 m/s in the opposite direction to Y
- B 0.60 m/s in the same direction as Y
- C 1.4 m/s in the opposite direction to Y
- D 1.4 m/s in the same direction as Y

2. Nov/2023/Paper_ 0625/22/No.7

A resultant force F accelerates a car of mass m along a straight horizontal road from rest to a speed v in time t, giving it momentum p.

Which pair of relationships for this situation is correct?

- A pt = mv and F = pt
- **B** p = mv and F = pt
- **C** p = mv and Ft = p
- **D** p = mvt and Ft = v

3. Nov/2023/Paper_0625/42/No.3(a)

(a) A balloon of mass 15g is glued to a straw. The straw is threaded onto a horizontal string, as shown in Fig. 3.1.

The balloon is filled with air and then the air is released.

Fig. 3.1

As the air leaves the balloon, the balloon experiences a force.

The balloon accelerates from rest until it reaches a constant speed. It then travels 0.67 m in 0.18 s at this constant speed.

(1)	Explain in words what is meant by the term impulse.	
		[1]
(ii)	Calculate the resultant impulse on the balloon while it is accelerating.	
	impulse =	[3]
iii)	Explain how momentum is conserved as the balloon accelerates.	[~]

4. Nov/2023/Paper_ 0625/43/No.3

Fig. 3.1 shows a boy throwing a ball at an object in a fairground.

Fig. 3.1

The ball has a mass of 190 g and travels horizontally with a constant speed of 6.9 m/s.

(a) Calculate the momentum of the ball.

(b) After hitting the object, the ball bounces back along the same straight path with a speed of 1.5 m/s. The object has a mass of 1.8 kg.

Calculate the speed of the object after it is hit by the ball.

	(c) The kinetic energy of the ball is 4.5J before the collision and 0.2J after the collision.						the collision.		
		Calculate the	chan	ige in tota	l kinetic	energy of t	he ball	and object durin	g the collision.
				change	in total	kinetic ene	rgy =		[3]
									[Total: 8]
								1	
5.	June	/2023/Paper_06	25/21,	/No.9				. 20	
		object of mass N. The velocity						when it is acted of direction.	on by a force of
	For	which period of	f time (does the fo	rce act o	on the objec	t?		
	Α	0.90s	В	1.1s	С	1.5 s	Ď	3.6s	
						Co			
						9			
6. June/2023/Paper_0625/22/No.9 A resultant force of 2.0 N acts on an object of mass 3.0 kg for 6.0 s.									
	What is the change in velocity of the object?								
		0.25 m/s		1.0 m/s		4.0 m/s	D	36 m/s	
		••	7						
7.	June	/2023/Paper_06	25/23/	/No.9					
	A ball of mass 0.25 kg hits a wall at a speed of 16 m/s. It then rebounds back along its original path at a speed of 12 m/s.								
	What is the impulse experienced by the ball during its impact with the wall?								
	A	1.0 Ns		3.0 N s		4.0 Ns	npact wit	7.0Ns	
		-			_		_	• -	

	tudent catches a cricket ball. The speed of the ball immediately before it is caught is 18 m/s. mass of the cricket ball is 160 g.
(a)	Calculate the kinetic energy stored in the cricket ball immediately before it is caught.
	kinetic energy =[3]
(b)	It takes 0.12s to catch the ball and bring it to rest.
	Calculate the average force exerted on the ball.
	average force =[2]
(c)	As the student catches the ball, she moves her hands backwards.
	Explain the effect of this action on the student's hands.
	[1]
	[Total: 6]

8. June/2023/Paper_0625/42/No.2