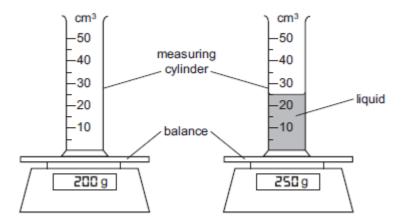
Density

Question Paper 1

Level	IGCSE
Subject	Physics (0625/0972)
Exam Board	Cambridge International Examinations (CIE)
Topic	General Physics
Sub-Topic	Density
Booklet	Question Paper 1

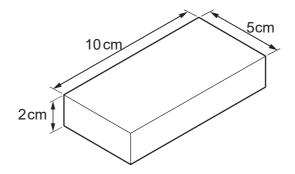
Time allowed: 20 minutes


Score: /16

Percentage: /100

Grade Boundaries:

9	8	7	6	5	4	3	2	1
>85%	75%	68%	60%	55%	50%	43%	35%	<30%

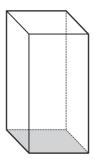

The diagram shows an experiment to find the density of a liquid.

What is the density of the liquid?

- A 0.5g/cm³
- B 2.0g/cm³
- C 8.0g/cm³
- D 10.0g/cm³

A metal block has the dimensions shown. Its mass is 1000g.

What is the density of the metal?


$$\mathbf{A} \quad \left(\frac{5 \times 10}{1000 \times 2}\right) g / cm^3$$

$$\textbf{B} \quad \left(\frac{2 \times 5 \times 10}{1000}\right) \text{g/cm}^3$$

$$\textbf{C} \quad \left(\frac{1000 \times 2}{5 \times 10}\right) \text{g/cm}^3$$

$$\textbf{D} \quad \bigg(\frac{1000}{2\!\times\!5\!\times\!10}\bigg) g/\text{cm}^3$$

A student wishes to determine the density of the solid block shown.

Which quantities must be known?

- A the area of the shaded face and the volume of the block
- B the area of the shaded face and the weight of the block
- C the mass of the block and the height of the block
- D the mass of the block and the volume of the block

Two cylinders are made of the same metal. Both cylinders have the same cross-sectional area but one is longer than the other.

The second section of the section of the second section of the section of	(I) the state of t
cylinder 1	cylinder 2

Which quantity is the same for both cylinders?

- A. density
- B. mass
- C. resistance
- D. volume

Question 5

 $\textit{Head to } \underline{\textit{savemyexams.co.uk}} \textit{ for more awe some resources}$

The mass of a piece of metal is 1200 g.

A measuring cylinder contains 150 cm of water.

The piece of metal is put into the measuring cylinder. The water level rises to 250 $\,\mathrm{cm}^3$ and covers the metal.

What is the density of the metal?

A $3.0 \,\mathrm{g/cm^3}$

B 4.8g/cm³ C 8.0g/cm³ D 12.0g/cm³

Question 6

A person measures the length, width, height and mass of a metal block with rectangular sides.

Which of these measurements must be used in order to calculate the density of the metal?

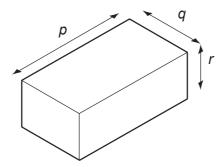
- A. mass only
- B. height and mass only
- C. length, width and height only
- D. length, width, height and mass

A liquid has a volume of 100 cm³ and a mass of 85g.

The density of water is 1.0g/cm³

How does the density of the liquid compare with the density of water?

- A Its density is higher than that of water.
- B Its density is lower than that of water.
- C Its density is the same as that of water.
- D It is impossible to say with only this data.



The table gives the volumes and masses of four objects.

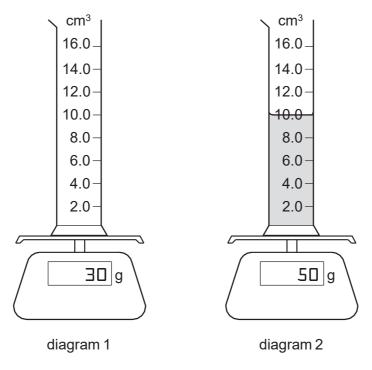
Which object has the greatest density?

	mass/g	volume/cm ³
Α	5.4	2.0
В	13	3.0
С	15	6.0
D	18	5.0

The diagram shows the dimensions of a rectangular block of metal of mass m.

Which expression is used to calculate the density of the metal?

A.
$$m \times p \times q$$


B.
$$m \times p \times q \times r$$

$$C = \frac{m}{(p \times q)}$$

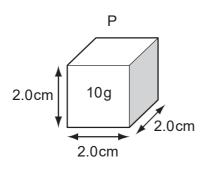
$$D = \frac{m}{(p \times q \times r)}$$

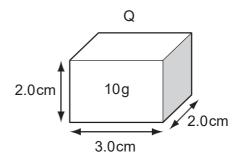
Diagram 1 shows an empty measuring cylinder on a balance.

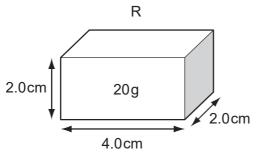
Diagram 2 shows the same measuring cylinder on the balance, but it now contains a liquid.

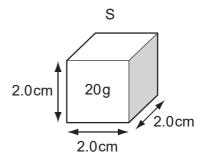
What is the density of the liquid?

A 0.2g/cm³

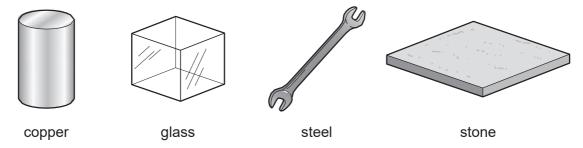

B $0.5g/cm^3$


 $C 2.0g/cm^3$


D 5.0g/cm³



Four rectangular blocks, P, Q, R and S are shown. Each block is labelled with its size and its mass.


Which two blocks have the same density?

- A P and Q
- B P and R
- C Q and R
- D R and S

A student is given four different objects and a metre rule.

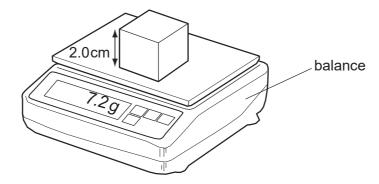
Each object has a known mass. She is asked to determine the densities of the materials from which the four objects are made.

The objects are a copper cylinder, a glass cube, a steel spanner and a stone tile.

Using only the metre rule, she is able to find the densities of only three of the four materials.

Which three materials are these?

- A copper, glass and steel
- B copper, glass and stone
- C copper, steel and stone
- D glass, steel and stone



A stone has a volume of $0.50\,\text{cm}^3$ and a mass of $2.0\,\text{g}$.

What is the density of the stone?

- $A \quad 0.25 g/cm^3$
- B $1.5 \, g \, / \, cm^3$
- C $2.5 \, g \, / \, cm^3$
- D 4.0 g/cm³

A cube of side 2.0cm is placed on a balance.

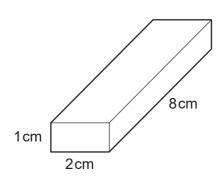
What is the density of the cube?

- $A \quad 0.90\, g/cm^3$
- B 1.2g/cm³
- C 1.8g/cm³
- $D \quad 3.6 \, g/cm^3$

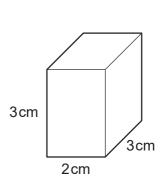
Question 15

A student is told to measure the density of a liquid and also of a large cube of metal.

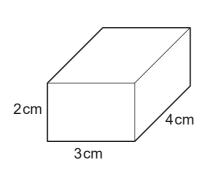
Which pieces of equipment are sufficient to be able to take the measurements needed?

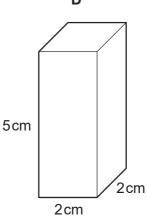

- A. balance, measuring cylinder and ruler
- B. balance and thermometer
- C. measuring cylinder and ruler
- D. measuring cylinder, ruler and thermometer

Head to <u>savemyexams.co.uk</u> for more awesome resources


The diagrams show four blocks with the same mass.

Which block is made from the least dense material?




В

С

