Sound

Question Paper 1

Level	IGCSE
Subject	Physics (0625/0972)
Exam Board	Cambridge International Examinations (CIE)
Topic	General Physics
Sub-Topic	Sound
Booklet	Question Paper 1

Time allowed: 19 minutes

Score: /15

Percentage: /100

Grade Boundaries:

9	8	7	6	5	4	3	2	1
>85%	75%	68%	60%	55%	50%	43%	35%	<30%

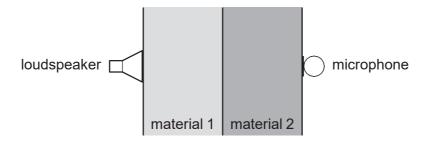
A sound wave travels through air as a series of compressions and rarefactions.

Which row correctly compares the air pressure in a compression and the air pressure in a rarefaction to the air pressure nearby where there is no sound wave?

	air pressure in a compression	air pressure in a rarefaction
Α	higher	higher
В	higher	lower
С	lower	higher
D	lower	lower

1

' A sound wave has a certain amplitude and a certain frequency.

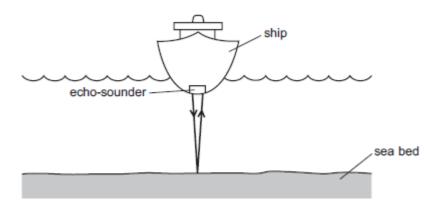

A second sound wave is quieter and lower in pitch than the first sound wave.

The second wave has

- A. a larger amplitude and a greater frequency.
- B. a larger amplitude and a smaller frequency.
- C. a smaller amplitude and a greater frequency.
- D a smaller amplitude and a smaller frequency.

The sound from a loudspeaker must pass through two materials to reach a microphone.

Which combination of materials gives the shortest time for the sound to reach the microphone?


	material 1	material 2
Α	air	hydrogen
В	air	water
С	copper	aluminium
D	water	oil

Which range of wave frequencies includes only sounds that can be heard by a human with normal hearing?

- A. 3.0 Hz to 300 Hz
- B. 30 Hz to 3000 Hz
- C. 300 Hz to 30 000 Hz
- D 3000 Hz to 300 000 Hz

An echo-sounder on a ship produces a pulse of sound. The echo is received by the echo-sounder after two seconds.

The speed of sound in sea-water is 1500 m/s.

What is the depth of the sea-water below the ship?


- A 750 m
- B 1500 m
- C 3000m
- D 6000m

Which row states two properties of sound waves?

	can travel through	type of wave
Α	a vacuum	longitudinal
В	a vacuum	transverse
С	water	longitudinal
D	water	transverse

A man holding a starting pistol stands 640 m away from a spectator.

The spectator hears the sound of the starting pistol 2.0 s after seeing the flash from the pistol.

Using this information, what is the speed of sound in air?

A 160 m/s B 320 m/s C 640 m/s D 1280 m/s

A quiet sound is produced by a loudspeaker. The loudness of the sound is increased.

\				41			: -	:
vvnicn	pro	nerrv	OΤ	me	souna	wave	ıs	increased?
	P . U	~~,	•					

- A amplitude
- B frequency
- C speed
- D wavelength

The frequency of a musical note is increased.

A student hearing the sound detects an increase in which property?

- A. loudness of the sound
- B. pitch of the sound
- C. speed of the sound wave
- D. wavelength of the sound wave

Head to <u>savemyexams.co.uk</u> for more awesome resources

Which row states whether light waves and whether sound waves can travel in a vacuum?

	sound waves	light waves
Α	no	no
В	no	yes
С	yes	no
D	yes	yes

Head to <u>savemyexams.co.uk</u> for more awesome resources

Sounds are produced by vibrating objects. A certain object vibrates but a person nearby cannot hear any sound.

Which statement could explain why nothing is heard?

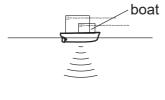
- A. The amplitude of the sound waves is too large.
- B. The frequency of the vibration is too high.
- C. The sound waves are transverse.
- D. The speed of the sound waves is too high.

Head to savemyexams.co.uk for more awesome resources

Two sounds X and Y are produced by loudspeakers.

The amplitude and frequency of each sound wave is given in the table.

	amplitude/mm	frequency/Hz
Х	1.3	475
Υ	2.0	235


How does sound Y compare with sound X?

- A Y is louder and has a higher pitch.
- B Y is louder and has a lower pitch.
- C Y is quieter and has a higher pitch.
- D Y is quieter and has a lower pitch.

Head to <u>savemyexams.co.uk</u> for more awesome resources

A pulse of sound is produced at the bottom of a boat. The sound travels through the water and is reflected from the sea bed. The sound reaches the boat again after $1.2 \, \text{s}$. The speed of sound in the water is $1500 \, \text{m/s}$.

How far below the bottom of the boat is the sea bed?

A 450 m

B 900 m

C 1800 m

D 3600m

What is the approximate range of audible sound frequencies for a human with good hearing?

- A. from 20 Hz to 2000 Hz
- B. from 20 Hz to 20 000 Hz
- C. from 200 Hz to 20 000 Hz
- D. from 200 Hz to 200 000 Hz

A boy blows a whistle that has a frequency of 10 000 Hz. The boy's friend cannot hear the sound from the whistle. The friend has normal hearing.

What could be a reason why he cannot hear the sound?

- A The amplitude is too large.
- B The amplitude is too small.
- C The frequency is too high.
- D The frequency is too low.