UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the June 2004 question papers

0653 COMBINED SCIENCE

www.papacambridge.com

0653/01	Paper 1 (Multiple Choice), maximum raw mark 40
0653/02	Paper 2 (Core), maximum raw mark 80
0653/03	Paper 3 (Extended), maximum raw mark 80
0653/05	Paper 5 (Practical), maximum raw mark 30
0653/06	Paper 6 (Alternative to Practical), maximum raw mark 60

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade threshol examination.	ds taken for Sy	yllabus 0653 (Combined Sci	ence) in the J	une 2004	Cambre
	maximum	miı	nimum mark re	equired for gra	ade:	
	mark available	А	С	Е	F	
Component 1	40	35	27	19	14	
Component 2	80	-	42	26	19	
Component 3	80	55	32	20	16	
Component 5	30	22	15	11	9	
Component 6	60	48	39	25	17	

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 0653/01

COMBINED SCIENCE Paper 1 (Multiple Choice)

Page 1		cheme	Syle	er er
	COMBINED SCIE	NCE – JUNE 2004	Syln 0653	Space .
Question Number	Key	Question Number	Key	DapaCambridge.
1	C	21	В	990
2	Α	22	Α	
3	D	23	Α	
4	D	24	D	
5	В	25	Α	
6	Α	26	D	
7	В	27	С	
8	С	28	D	
9	D	29	D	
10	С	30	D	
11	Α	31	С	
12	С	32	Α	
13	D	33	С	
14	Α	34	С	
15	В	35	D	
16	В	36	Α	
17	С	37	С	
18	Α	38	Α	
19	D	39	Α	
20	С	40	D	

TOTAL 40

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0653/02

COMBINED SCIENCE Paper 2 (Core)

Page	e 1 Mark Scheme	Sylla Ser
	COMBINED SCIENCE – JUNE 200	4 0653 22
		an,
1(a)	Q; P·	191ic
	P; Q;	[3]
(b)(i)	air contains other gases / substances / air not pure o	Sylk of an or of a ser of a se
<i>Б</i> ,(:,	(so) oxygen less concentrated /diluted by other gase	es /
	reasonable reference to collisions / reaction rate low	ver; [2]
(ii)	hydrogen + oxygen \rightarrow water;	[1]
	(reject \rightarrow hydrogen oxide)	
		Total 6 marks
2(a)	contains DNA ; contains inherited information / genes;	
	controls the activities of the cell ;	
		[2] max
(b)	drawing with two outer lines (not one as for anim	nal cell) :
,	cell membrane and cell wall correctly labelled (bo	oth required);
	chloroplast (obviously) in cytoplasm and labelled nucleus in cytoplasm and labelled ;	1;
	vacuole in cytoplasm and labelled ;	
		[4] max
(c)	(sun)light energy is always falling on Earth / idea	that sunlight
,	won't run out ;	-
	wood formed as a result of photosynthesis / ener	rgy in wood
	comes from sunlight ;	[2]
		Total 8 marks
3(a)(i)	(just over) 2 (km/h) (accept 2 to 2.4);	[1]
(ii)	15 (km/h);	[1]
,		
~ \		
(b)	kinetic/ movement; electrical (accept electric and electricity);	
		[2]
(c)(i)	noise / eyesore / only effective over a certain range	
	•	[1]
(ii)	oil / gas (reject crude oil);	[1]
(iii)	carbon / hydrogen;	[1]

Page 2	Mark Scheme Syl	er er
	COMBINED SCIENCE – JUNE 2004 06	53 23
		Can
4(a)	carbon dioxide / CO ₂ ; limewater / calcium hydroxide solution;	12 25 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
(b)	more than one type of atom / element; joined / bonded; made of molecules containing different elements / types of atom;	
	made of molecules containing different elements / types of atom,	
		[2] max
(c)(i)	H ₂ SO ₄ ;	[1]
(ii)	\rightarrow sodium sulphate; + carbon dioxide; + water; (products)	[3]
(iii)	no more effervescence / other correct;	[1]
(iv)	dangerously explosive / owtte	[1]
	Tota	l 10 marks
5(a)(i)	the more cigarettes smoked the greater the percentage of babies	
	with low birthweight ; effect greatest between 0 and 15 (cigarettes per day) ;	[2]
(ii)	(no) they only show there is a relationship; not that one causes the other; some low birth weight born to non-smokers; other argument ;	
(b)(ii)	(via) placenta ;	[2] max
	by diffusion ; from mother's blood ;	[3]
(c)	paralyses / stops, cilia ; which allows mucus to build up in, lungs / bronchi ; and allows bacteria to get into the, lungs /bronchi ;	
	bacteria breed in the mucus ;	[2] max

Total 9 marks

Page 3	3 Mark Scheme Syln	A per
	COMBINED SCIENCE – JUNE 2004 0653	abac.
		1) Papacambridge.co [1] [1]
6(a)(i)	gamma;	[1] ³ e.c
(ii)	gamma;	[1]
(iii)	X – rays;	[1]
(iv)	radiowaves / microwaves;	[1]
(b)(i)	distance = speed x time / d = s x t / other sensible symbols; $300\ 000\ 000\ x\ 0.00004\ \div\ 2;$ = $6000(m);$ (only lose one mark if all correct except no division by 2)	[3]
(ii)	energy is lost (as signal travels); so less energy enters the receiver than was sent out; signal scattered / not all reflected back;	[2]
(iii)	(strips) reflect microwaves / radar signal; produce false image in addition to the plane's image / owtte;	[1] max
(c)(i)	wavelength correctly labelled; (penalise careless indication of wavelength)	[1]
	amplitude correctly labelled;	[1]
	10 waves (pass a point) per second;	[1]
	Total 13 n	narks
7(a)	two from malleable, ductile, good conductor of electricity, good conductor of heat, high density;; (must indicate that metals tend to these properties or lose one mark)	[2]
(b)(i)	<u>heat</u> energy given out;	[1]
(ii)	hydrogen; magnesium oxide;	[2]
(c)	ionic / electrovalent; covalent;	[2]
(d)(i)	unreactive / doesn't corrode / react with food; (reject references to rusting)	[1]
(ii)	name; correct use; (e.g. argon in light bulbs / helium in balloons (allow air balloons)	
	/ neon in lighting)	[2]

Total 10 marks

Page 4	Mark Scheme Sylk	2
	COMBINED SCIENCE – JUNE 2004 0653	Da
	A - aorta ; B - pulmonary vein ; C - right atrium / auricle;	PapaCal. [3]
	valve will not close; nothing to stop blood flowing backwards / the wrong way; back into (left) atrium ;	[0] [2] max
.,	in the lungs / alveoli ; oxygen diffuses (from air into blood) /oxygen combines with haemoglobin ;	
		[2]
	oxygen is needed for respiration ; to provide energy ; (muscles need) a lot of oxygen when exercise is done ; lack of oxygen may cause anaerobic respiration / formation of lactic acie muscle cramps / pain;	d;
		[2] max
	Total 9 m	arks
	weight is a force depending upon gravity; mass depends on the amount of matter in an object;	[2]
	(high voltage means) lower current; reduces energy losses;	[2]
	sound waves need a medium to travel / move via vibration of particles; no matter in a vacuum / nothing to vibrate;	[2]
	(some) beta radiation can travel through metal; thickness controls the amount of radiation passing through / owtte	[2]

Total 8 marks

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0653/03

COMBINED SCIENCE Paper 3 (Extended)

Pag	e 1	Mark Scheme	Syln Syln
		COMBINED SCIENCE – JUNE 2004	Sylh Dapa er 0653 Dapa Cambridge.
)(i)	(compo	ound) containing carbon and hydrogen ;	PH
	only ;		onia
			.90
	air / ox	ygen, limited ;	
	-	plete combustion ;	
	soot / c	carbon, produced or black material is soot ;	[2] max
)	combu	stion / fire, needs, oxygen / air ;	
	foam b	locks air from fire ;	[2]
)(i)	C ₂ H ₄ +	+ 3O ₂	
	lose or	ne mark for each error	[2]
)	equal r	numbers of each type of <u>atom</u> on both sides ;	[1]
)	B on a	ny bond on LHS ;	[1]
)	M on a	ny bond on RHS ;	[1]
			Total 11 mark
a)	(lake Y)	
	more s	pecies present ;	[1]
)(i)	higher	pH in lake Y / pH closer to neutral /less acidic / higher	
	-	s diversity in lake Y ;	
		in Y is more alkaline	[1]
)	acid ne	eutralised by limestone / acid reacts with limestone ;	[1]
)	combu	stion / burning ;	
	correct	reference to sulphur oxides ;	
	which a	are acidic ;	
	ignore	refs to acid rain	[2] max
	reduce	s photosynthesis ;	
		oduction / fewer producers / fewer plants / less food	
	produc	ed;	
	less fo	od for, herbivores / consumers / animals ;	
	not 'org	ganisms' or 'creatures'	[3]
			Total 8 marks

	e 2 Mark Scheme	Sylin Ser
	COMBINED SCIENCE – JUNE 2004	0653 7030
		Sylk Papa per 0653 Papa annoridase.
3 (a)(i)	work = force x distance <i>or</i> work = weight x distance ;	1960
	1600 x 2 = 3200 J ; <i>allow Nm</i>	
(ii)	power = work ÷ time <i>or</i> power = energy ÷ time ;	
	= 3200 ÷ 0.5 = 6400 W ; allow J/s	[2]
(b)(i)	(gravitational) potential (energy) ;	[1]
(ii)	kinetic ;	[1]
		Total 6 marks
4(a)	(chlorine is) harmful to humans ;	
	not 'dangerous' allow 'dangerous to humans'	
	not 'chlorine produces a harmful gas'	[1]
(b)(i)	chlorine is more reactive than iodine / chlorine displaces iodin	ne /
	chlorine oxidises iodide ;	[1]
(ii)	the darker the colour the more iodine produced ;	
	the more iodine produced the more chlorine there was in the	bleach ;
	allow one mark for darker brown meaning more chlorine	[2]
c)(i)	one shared pair ;	
	all other outer electrons correct ;	
	ignore inner shells	[2]
	covalent ;	[1]

Total 7 marks

Pag	ge 3 Mark Scheme	Syla oer
	COMBINED SCIENCE – JUNE 2004	0653 2020
ō(a)(i)	AA ;	Syln, Baba er 0653 Bacambridge.co
ii)	both AA and Aa crossed with aa ;	
	gametes shown correctly in one diagram ;	
	offspring shown correctly in one diagram ;	
	stated or highlighted that Aa parent will produce some low	vitamin C
	offspring ;	
	if many other crosses shown, mark <u>one</u> correct one, but do	o not give
	1st mark	[4]
(b)	yes (no mark)	
	1 (asexual reproduction) (from AA or Aa) produces identication	al
	offspring ;	
	2 genetically identical / clones ;	
	3 so he can use either AA or Aa as parents / can also use	Aa ;
	4 sexual reproduction, will produce variable offspring / may	y produce
	aa ;	
	5 he may get more plants more quickly using asexual repre-	roduction ; [2] max
(c)	needed for, making collagen / strong gums / healthy skin /	wound
	healing /immunity ;	
	lack causes scurvy ;	[2]
		Total 9 marks

			WWW. Baba er 53 Baba Cambridge com
Pa	ge 4	Mark Scheme Syli	A per
		COMBINED SCIENCE – JUNE 2004 06	53 23
6(a)	solid	- particles touching and regularly arranged; must use same	Call.
	symb	pols	101:
	gas -	no more than six particles in the box, widely separated ;	Sec
(b)(i)	to allo	ow for expansion ;	9m
	in hig	gh temperatures ;	
	avoid	ds damage to bridge ;	[2] max
(ii)	time =	= distance ÷ speed ;	-
	50 ÷ 2	20 = 2.5 seconds ;	[2]
(c)(i)	poor	conductor / good insulator ;	[1]
(ii)	refere	ence to radiation ;	
	black	surfaces absorb heat (radiation) ;	
	white	e surfaces reflect heat (radiation) ;	
	if ans	swer given in terms of light, allow first marking point only	[2] max
(iii)	refere	ence to convection ;	
	cold a	air denser than warm air ;	
	cold a	air (from freezer) sinks / warm air rises ;	[2] max

Total 11 marks

Pa	ge 5 Mark Scheme	Syla Syla
	COMBINED SCIENCE – JUNE 2004	0653 7030
(a)	N ₂ ;	all.
	O ₂	Otic
	78 to 80 % <u>and</u> 20 to 22 % ;	Se
b)(i)	1 <u>push</u> air from one syringe into the other ;	Sylla Bar Bar Bar Bar Bar Bar Bar Bar Bar Ba
<i>'</i>)(')	2 several times / back and forth ;	
	3 until the volume of air shows no further change ;	
	4 allow apparatus to cool ;	
	5 percentage of oxygen is the decrease in volume / co	rrect ref to
	volume decrease ;	[3] max
ii)	2, 6 for oxygen atom ;	
,	2, 8 for oxide ion ;	
	if inner shells incorrect, allow one mark	[2]
iii)	2 - ;	[1]
iv)	atom gains electrons ;	[1]
		Total 10 marks
s(a)	water moves out of the cells ;	
	cells shrink (<i>not</i> plasmolyse) ;	[2]
b)(i)	insulin ;	
	secreted by pancreas ;	
	causes liver to, take up / use, more glucose ;	[3]
ii)	homeostasis ;	[1]
c)	starch (molecules) broken down / digested / changed,	to sugar /
	glucose ;	
	by amylase / carbohydrase ;	
	glucose / sugar, absorbed into the blood ;	
	in the small intestine / ileum ;	
	through villi ;	[3] max

Total 9 marks

Sylk Der 2004 0653 Dacambridge
ambridge
oridge.
350
[(
[2
[2

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 30

SYLLABUS/COMPONENT: 0653/05

COMBINED SCIENCE Practical

Page	1	Mark SchemeSylkCOMBINED SCIENCE – JUNE 20040655	ap per
Question '	1		Can
a)	good o chloroj	quality drawing of both leaf sections, <u>both</u> showing areas <u>with</u> and <u>wi</u> phyll	oanacannin thout [2]
b)	(may b	g a leaf section A with no blue/black area be labelled brown) g of leaf section B with blue/black area clearly shaded and labelled	[2]
		rsed but fits first drawing, allow	ر کا
c)	Plant E	3 unless it follows from (b) that A is correct ection turned blue/black	[2]
d) (i)		oil; edict's solution; e result goes green/yellow/red	[3]
(ii)	green	part because chlorophyll is needed for photosynthesis sing starch/sugar	[1]
		Total	10 marks
Question	2		
a) (i)	value f	or h within 0.4 mm of supervisor	[1]
(ii)	brief d	escription of how volume was found	
	volume	e within 10 cm ³ of supervisor	[1]
b)	Table		
	Six pai	irs of values	
	Good s	spread to include a value equal to 150 cm ³	
		s in mm and decreasing with volume of water ise 1 mark when all intervals are exactly the same)	[3]
c)	Graph		
	Sensib	le scales for the plotted points	
	Plotting	g correct for 4 values	
	Best st	traight line drawn	[3]
	Volum	e correctly read needs evidence of extrapolation	
	Within	10% of recorded volume	[2]
		Total	10 marks

Pag	ge 2	Mark Scheme	Syla oer
		COMBINED SCIENCE – JUNE 2004	0653 20
Questio	on 3		ant
(a)	gas/va	apour burns	Sylk papacanth 0653 Papacanth [2]
	brown	or charring/smoke/smell	[2]
(b)	goes c	out NOT 'nothing'	[1]
(c)	UI goe	es red	
	pH abo	out 1-4	
	acid pr	resent	[3]
(d)	efferve	escence or gets cold	[1]
(e)	brief d	escription	[1]
	diagra	m	[2]
			Total 10 marks

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 0653/06

COMBINED AND CO-ORDINATED SCIENCE Alternative to Practical

Pa	Page 1 Mark Scheme Sylk Sylk		per
		COMBINED SCIENCE – JUNE 2004 0653	
Questic	on 1		amp
(a)		Mark Scheme Sylk COMBINED SCIENCE – JUNE 2004 0653 ving of strip from leaves A and B (1) 0653 as/chlorophyll correctly labelled (1) 0653 n/brown/yellow on leaf A (1) 0653 area on leaf B (1) 0653	110
(b)	light brown/brown/yellow on leaf A (1) blue/black area on leaf B (1)		
(c)(i)		cause no starch present/has been used up (1) ynthesis /light is needed to make starch (1)	[2]
(ii)		nd in green areas/where chlorophyll is found (1) I is necessary for starch synthesis/photosynthesis (1)	[2]
		Total 8	8 marks
Questic	on 2		
(a)	1.8V(1), 15 2.4V(1), 25 +/- 0.1V, +	50 mA -/-10 mA	
		(1 mark for both current readings)) [3]
(b)		prrectly plotted (2) (can be straight or curved)(1)	[3]
(c)(i)	the bulb becomes brighter as resistance decreases		[1]
(ii)	the filamer	nt of the bulb melted OWTTE	[1]
(d)		it is not a straight line/V and I are not proportional. raph is a straight line /(they are proportional)	[1]
		Total	9 marks
Questic	on 3		
(a)(i)	53.4 g, 60.	.0 g (Must say 60.0), no tolerance (2)	
(ii)	6.6 g (ecf)) (1)	[3]
(b)	blue litmus	s (U.I) paper turns red in the gas (reject add indicator)	[1]
(c)(i)	56.8 g (nc	o tolerance)	
(ii)	3.2 g (ecf)) both correct for 1 mark	[1]
(d)		to remove some water (1) leave the solution to cool (1) rate solution(1) over a boiling water bath (1)	[2]
(e)(i)	62.9 g, (no	o tolerance) (1)	
(ii)	9.5 g (ecf)	(1)	[2]
(f)	water of cr	per nitrate left in the solution during crystallisation/ rystallisation was lost/copper nitrate decomposed/ able answer based on experimental details	[1]
		Total 10	_

Total 10 marks

ı ay	e 2	Mark Scheme Sy	a per
	C	OMBINED SCIENCE – JUNE 2004 0	653 Dac
Question	4		Phile.
(a)	0.8, 0.5 (no tolerance)	1
(b)	42, 37°C (no toleran	ce)	
(c)(i)	17, 12 °C (errors car	ied forward)	MMM. Papa er 653. aha Cambrid [2]
(ii)	ring: $\frac{50 \times 17 \times 4.2}{0.8}$ (e	ecf) (1) = 4462.5 (1)	
	cheeso: $\frac{50 \times 12 \times 4.2}{0.5}$	$\frac{2}{2}$ (ecf) (1) = 5040 (1)	
	joules/J (kJ accepted	d if energy totals divided by 1000) (1)	[5]
(d)	respiration		[1]
			Total 12 marks
Question	5		
	box 2(a) carbon diox	een(1) to red (1)	1) [7]
	reaction vessel with o gas collected over wa means of measuring		[3]
			Total 10 marks
Question	6		
(a)(i)	Use a pipette/droppe	r/burette	[1]
(ii)	103 (no tolerance) (1) 147 (ecf) (1)	[2]
(b)	28mm, 14mm (+/- 1 ı	nm)	[2]
(c)(i)	all points from Fig.6.3	and scale correctly shown (1) 3 plotted correctly (1) ttended to cut horizontal axis (1)	[3]
(ii)	-	n graph (approx 147 cm ³)	[1]
	it will sink OWTTE	· · · ·	[1]
(d)	Yes/ comparison of (similar to (or greater	a) and (c)(ii) shows that mass in cup is numerically than) its volume ore its mass (g) exceeded the volume (cm ³) (depend	
	graph) (mark for explanatior		[1]
		,	L · .