Centre Number Candidate Number Name

www.PapaCambridge.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

COMBINED SCIENCE

0653/02

Paper 2

October/November 2005

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a soft pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 20.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

For Exam	For Examiner's Use		
1			
2			
3			
4			
5			
6			
7			
8			
9			
Total			

[1]

1 A student was asked to prepare some copper sulphate crystals. The diagrams, P, Q and R, in Fig. 1.1 show three important steps in the method the stu used.

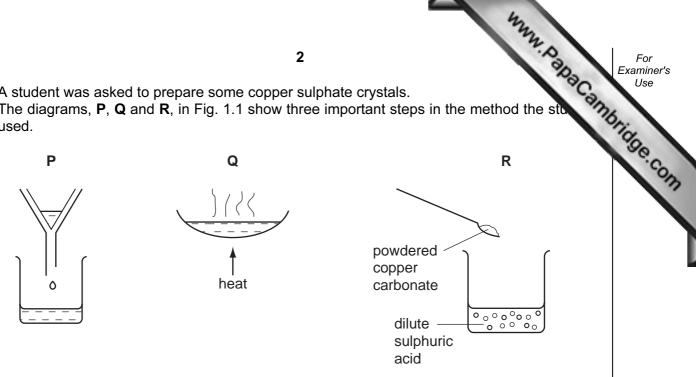


Fig. 1.1

(a) (i) Complete the table, using the letters P, Q and R, to show the order in which these processes should be carried out to produce copper sulphate crystals.

first	
second	
third	

(ii)	Suggest how the student made certain that all of the sulphuric acid had reacted.
	[1]
iii)	State the chemical formula of sulphuric acid.
	[1]
iv)	State and explain briefly which one of the elements in copper sulphate solution gives the solution its blue colour.
	[2]

			my	
		3	100	8
The student then we from the copper su	•	•	produce some metallic list.	aCana.
Fill in the spaces in	n her plan using wo	ords chosen from the	list.	
anode	cathode	electrodes	electrolysis	
electrolyte	neutrali	sation	thermal decompositi	on
The method I will u	use is called		. In this method	, two
The method I will u	use is called	must be dipped into	. In this method,	
The method I will u			the copper sulphate solu	

2 (a) A radioactive source emits alpha radiation.

						MMM. Pall	
				4		T. Par	1
(a)	A ra	adioactive source emits	alpha radiati	on.			Can
	Nar	me the apparatus you w	ould use to c	detect th	ne radiation emitted.		13
							[1]
(b)	Alp	ha radiation is describe	d as ionising	radiatio	on.		
	(i)	Explain the meaning of	of the term ior	nising ra	adiation.		
							[1]
	(ii)	Explain why alpha rad	iation can be	harmfu	ıl to living organisms.		
				•••••			
							[1]
(c)		ha, beta and gamma ra w lines between the bo radiation			ent properties. ch type of radiation to its pro properties	perties.	
			1	•	no charge		
		alpha		l	partly stopped by 2 cm of lea	ad	
		beta		l	negative charge stopped by 2 cm of lead		
		gamma		l	positive charge stopped by 6 cm of air		
							[2]

(d)	Electricity	can be	generated	by	nuclear	fission

	Why.
	5
Ele	ctricity can be generated by nuclear fission.
(i)	ctricity can be generated by nuclear fission. Describe what happens to an atom during nuclear fission.
	[2]
(ii)	Energy from nuclear fission can be converted into electrical energy. The first stage of this is the conversion of nuclear energy into heat energy.
	Naming the equipment involved describe how the heat energy is then converted into electrical energy.
	[3]

3 Racing cyclists train hard to be good at their sport, and eat a carefully planned diet.

(a)	A cyclist is a living organism, but a bicycle is not.	
	State two characteristic activities of a living organism such as a cyclist, that are shared by a bicycle.	no
	1	
	2	[2]
(b)	Professional cyclists eat a diet rich in carbohydrates and proteins.	
	State how each of these types of nutrients helps a cyclist to be good at this sport.	
	carbohydrates	
	proteins	
		[2]

www.PapaCambridge.com (c) Some professional cyclists who have taken part in international competition carried out a procedure called blood doping. Anyone who is found to have done to now disqualified.

Blood doping involves putting extra red blood cells into the cyclist's blood.

Table 3.1 shows how this affects the cyclist's blood and ability to exercise.

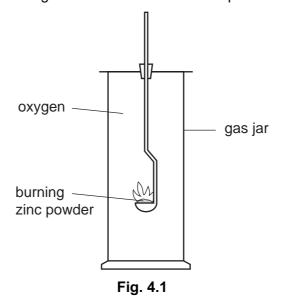
Table 3.1

	before blood doping	after blood doping
concentration of haemoglobin in the blood/g per cm ³	14	18
length of time the cyclist could run on a treadmill at top speed/seconds	793	918

(i)	What effect does blood doping have on the concentration of haemoglobin in the blood?
	[1]
(ii)	Explain why blood doping has this effect.
	[2]
(iii)	Using the information in Table 3.1, and your own knowledge, suggest how blood doping can help a cyclist to win a race.
	[3]

4 The chemical symbols for two elements are shown below.

⁶⁵₃₀ Zn


16 8

(a) Complete the table which refers to one atom of each element.

element	number of protons	number of neutrons	number of electrons
zinc			
oxygen			

[3]

(b) The apparatus shown in Fig. 4.1 was used to burn zinc powder in oxygen.

When the reaction had finished, a white solid, **X**, remained in the gas jar.

(i) Name the white solid X.

		[1]
(ii)	Name the type of chemical reaction in which X is formed.	

(iii) Explain why the mass of product **X** is greater than the original mass of zinc used in the experiment.

[1]

(c)	Sor	me types of steel fence are galvanised in order to prevent the steel from rustin	Ca
	(i)	Explain briefly what is meant by the term galvanised.	1
			[1]
	(ii)	Galvanising protects the steel from reacting with substances that cause rusting. Name two of these substances.	
		1	
		2.	[2]

5 Fig. 5.1 shows a caterpillar crawling across a large leaf. The caterpillar is moving at a speed of 1 mm/s.

(a) State a suitable piece of apparatus to measure

Fig. 5.1

A student measured this speed by measuring the distance covered by the caterpillar during one minute.

(i) the distance moved,	 [1]

(b) If the caterpillar is moving at a constant speed, calculate how far the caterpillar will travel in one minute.

Show your working and state the formula that you use.

formula used

working

	mm	[2]
--	----	-----

(c) Fig. 5.2 is a graph showing the speed of the caterpillar measured over 300 second

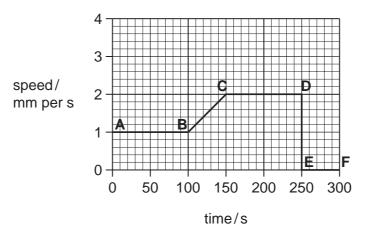


Fig. 5.2

(i)	How can you tell that the caterpillar is moving at a constant speed betwee A and B ?	en
		[1]
(ii)	After how many seconds does the caterpillar stop moving?	
		[1]
(iii)	Between which times is the caterpillar accelerating? Explain your answer.	
		[2]

6 (a) Fig. 6.1 shows a section through a leaf.

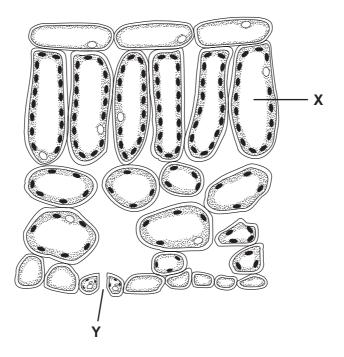
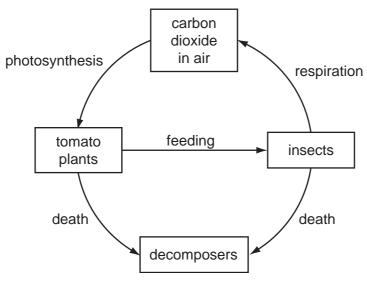
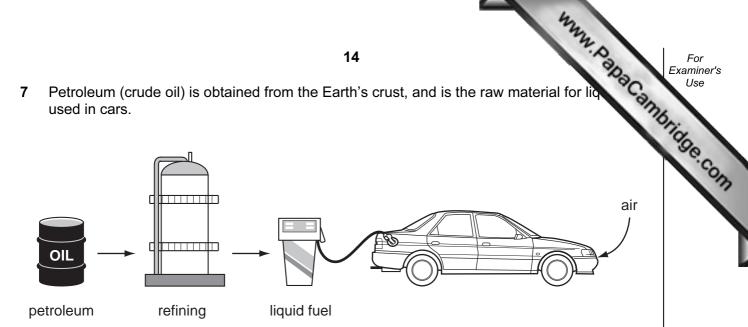



Fig. 6.1

(i)	On Fig. 6.1 draw an arrow to show how carbon dioxide travels to cell X .	[1]
(ii)	Describe and explain one way in which cell X is adapted for photosynthesis.	
		[2]
(iii)	In hot, dry weather the pore labelled Y closes.	
	Suggest how this helps the plant to survive.	


www.PapaCambridge.com **(b)** The leaves of tomato plants are sometimes eaten by insect pests. Fig. 6.2 shows some of the ways in which the tomato plants and insects both contito the carbon cycle.

- Fig. 6.2
- (i) On the diagram, draw and label two more arrows to show how carbon dioxide is returned to the air. [2]

(ii)	Using the information on Fig. 6.2, explain why destroying the plants on large areas of the Earth could contribute to global warming.			
	[3]			

Petroleum (crude oil) is obtained from the Earth's crust, and is the raw material for liq 7 used in cars.

(a)		me the process used at an oil refinery to separate petroleum into useful materials, th as gasoline and diesel for use as fuel for cars.
		[1]
(b)	Pet	roleum contains some compounds containing sulphur.
	(i)	Name three compounds which would be produced by the complete combustion of gasoline that contained some sulphur compounds.
		1
		2
		3
	(ii)	Explain why it is important that sulphur compounds are removed from gasoline before it is used as a fuel for cars.
		[2]

www.PapaCambridge.com (c) Fig. 7.1 shows a catalytic converter on a car. This device contains a metal When exhaust gases from the car's engine pass through the converter, cher reactions take place which reduce the amount of poisonous gases released into the an

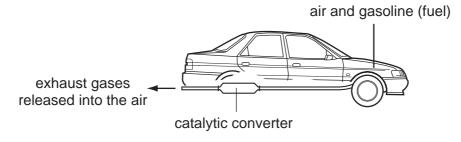


Fig. 7.1

(1)	Explain the meaning of the term <i>catalyst</i> .	
		[2]
(ii)	Suggest from which section of the Periodic Table the elements used to make catalyst should be chosen.	the
		[1]

8 (a) A student set up the circuit shown in Fig. 8.1.

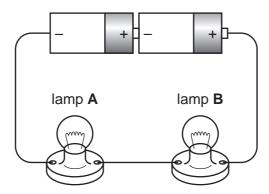


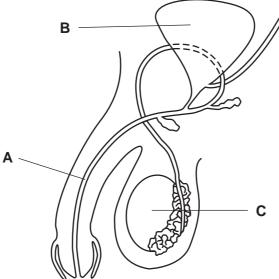
Fig. 8.1

Redraw this diagram as a circuit diagram using the correct electrical symbols.

[3]

- (b) The student noticed that neither lamp **A** nor lamp **B** lit up. She found nothing wrong with lamp **A**, but the filament in lamp **B** was broken.
 - (i) Explain why lamp ${\bf A}$ did not light up.

[1]


(ii) She replaced lamp **B** with a new lamp. The resistance of each lamp was 4 ohms when lit.

Calculate the combined resistance of both lamps in the working circuit.

ohms [1]

(c)	Ele	ctricity can be generated by many methods, including the use of solar energy.	3
	(i)	State one non-renewable fuel that is used to generate electricity.	
			[1]
	(ii)	Name the process that produces energy within the Sun.	
			[1]
	(iii)	Energy is transferred from the Sun to the Earth by radiation. Explain why energy cannot be transferred from the Sun to the Earth by conduction.	n.
		The state of the s	11

(a) Fig. 9.1 shows the male reproductive system.

		4300	
		Fig. 9.1	
	(i)	Name the part labelled A .	
		A	[1]
	(ii)	State the functions of parts B and C .	
		В	
		c	[2]
(b)	Sor	me organisms are able to reproduce both asexually and sexually.	
	(i)	Describe the differences between asexual reproduction and sexual reproduction.	
			[2]
	(ii)	Describe one way in which a plant reproduces asexually.	
			[2]

19

BLANK PAGE

www.PapaCambridge.com

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

20

DATA SHEET
The Periodic Table of the Elements

								Gro	Group								
_	=											=	≥	>	>	₹	0
							1 Hydrogen										4 He Helium
7 Li Lithium	Beryllium											11 Boron 5	12 Carbon 6	14 N Nitrogen 7	16 Oxygen	19 F luorine	20 Ne Neon 10
23 Na Sodium	24 Mg Magnesium 12											27 A1 Aluminium	28 Si Silicon	31 P Phosphorus 15	32 S Sulphur	35.5 C 1 Chlorine	40 Ar Argon
39 K Potassium 19	40 Calcium 20	Scandium	48 T Titanium	51 Vanadium 23	Chromium 24	Manganese	56 Fe Iron	59 Co Cobalt	S9 Nickel	64 Cu Copper	65 Zn Zinc	70 Ga Gallium 31	73 Ge Germanium 32	75 AS Arsenic 33	79 Selenium 34	80 Br Bromine	84 Kr Krypton 36
85 Rb Rubidium 37	Strontium	89 ×	91 Zr Zirconium 40	Niobium 41	96 Mo Molybdenum 42	Tc Technetium 43	101 Ru Ruthenium 44	103 Rh Rhodium	106 Pd Palladium 46	108 Ag Silver	112 Cd Cadmium 48	115 In Indium 49	Sn Tin	122 Sb Antimony 51	l	127 I lodine	131 X xenon xenon 54
133 Caesium 55	137 Ba Barium 56	139 La Lanthanum *	178 Hf Hafnium 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 Ir Iridium	195 Pt Platinum 78	197 Au Gold	201 Hg Mercury 80	204 T 1 Thallium	207 Pb Lead	209 Bi Bismuth	Po Polonium 84	At Astatine 85	Radon 86
Fr Francium 87	226 Ra Radium 88	Ac Actinium															
*58-71 L	*58-71 Lanthanoid series 90-103 Actinoid series	series əries		140 Ce Cerium 58	Pr Praseodymium 59	144 Nd Neodymium 60	Pm Promethium 61	Sm Samarium 62	152 Eu Europium 63	Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	73 Yb Ytterbium 70	Lu Lutetium 71

90-103 Actinoid series	a = relative atomic mass
90-103 Actinoid series	æ
90-10	

a = relative atomic mass	X = atomic symbol	b = proton (atomic) number	
m	×	p	
	Key		

	-	1	my.	
			2.	Q.
175	Γn	Lutetium 71	Lr Lawrenciu	GC GIAN
173	Υb	Ytterbium 70	Nobelium	DapaCambridge.com
169	E	Thulium 69	Mendelevium 101	OH)
167	ш	Erbium 68	Fm Fermium 100	1
	웃	37	ES Einsteinium 99	(r.t.p.).
162	٥	Dysprosium 66	Cf Calfornium 98	pressure
	Д		BK Berkelium	tture and
157	рg	Gadolinium 64	Cm Curium	r tempera
152	Eu	Europium 63	Am Americium 95	יז at room
150	Sm	Samarium 62	Pu Plutonium	s is 24 dn
	Pm	Promethium 61	Neptunium 93	of any ga
144	PZ	Neodymium 60	238 U Uranium 92	ane mole
141	Ą	Praseodymium 59	Pa Protactinium 91	The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).
140	පී	Cerium 58	232 Th Thorium	The vc

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).