

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

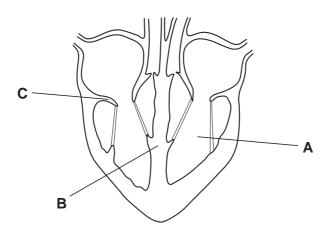
Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions. A copy of the Periodic Table is printed on page 20.

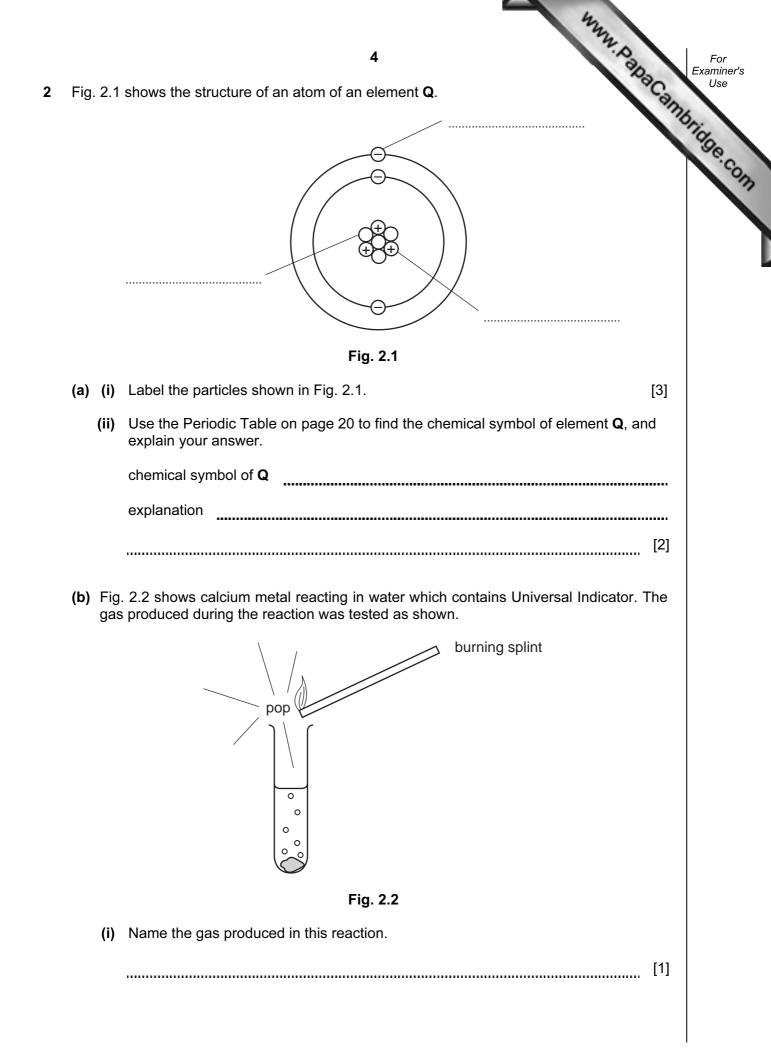
At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part _ question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

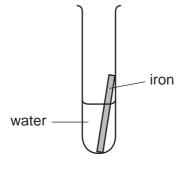

This document consists of 18 printed pages and 2 blank pages.

BLANK PAGE

www.papaCambridge.com Fig. 1.1 shows a vertical section through a human heart, drawn as though the pe 1 facing you.

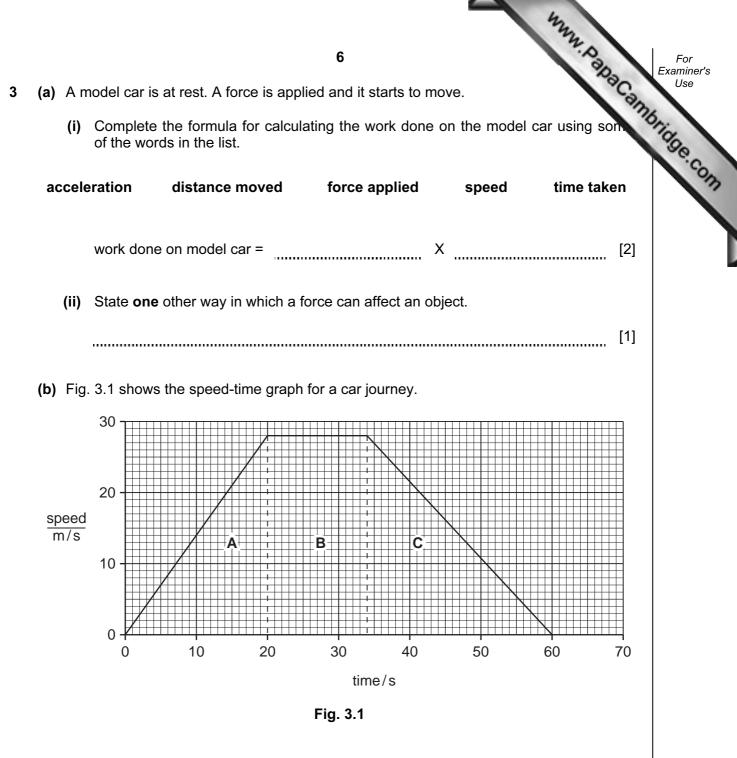

(a) Name the parts of the heart labelled A, B and C.

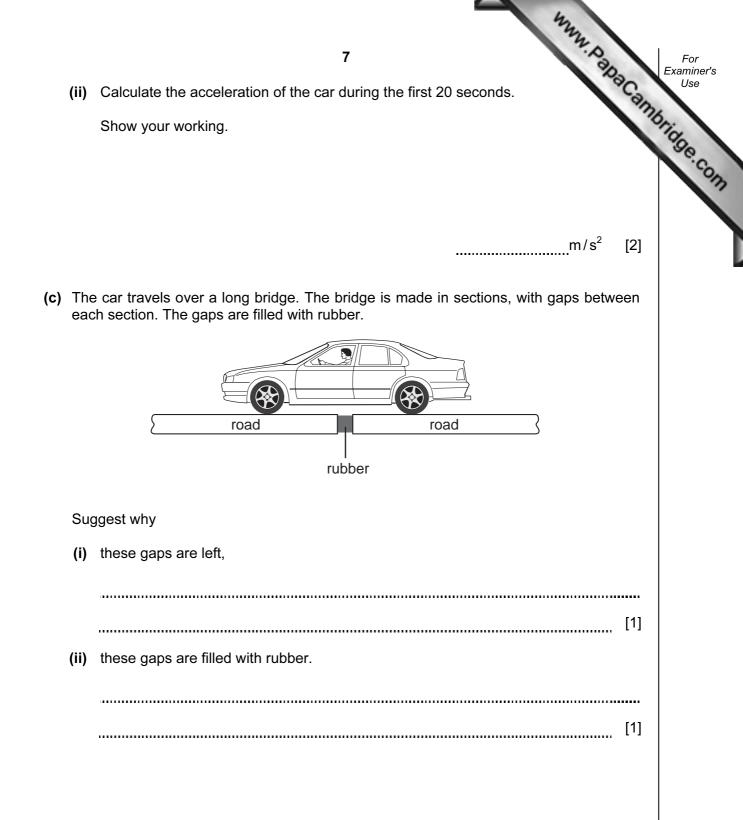
	Α		
	В		
	С		[3]
(b)	(i)	Use a pencil to lightly shade in the places in Fig. 1.1 where there is oxygenat blood.	ed [1]


- (ii) Where does the blood become oxygenated?
 - [1]
- (c) On the diagram, draw two arrows to show how blood travels through the left hand side of the heart. [1]
- (d) The heart muscle is supplied with blood through the coronary arteries.

Explain why a blockage in these arteries can cause a heart attack.

..... [2] _____


- www.papacambridge.com (ii) State and explain the colour change of the Universal Indicator during the rea
- (c) The piece of iron in Fig. 2.3 will take part in a chemical reaction which involves water.



State two ways in which the reaction of iron in Fig. 2.3 is different from the reaction of calcium in Fig. 2.2.

1.	
_	
2.	
	[2]

(i) Which section of the graph, A, B, or C, represents a constant speed?
 Explain your answer.
 [1]

www.papaCambridge.com 4 In Mexico, some areas of tropical rainforest have been cleared for growing cacad Beans from cacao trees are used for making chocolate. The beans are seeds, and develop from fertilised flowers.

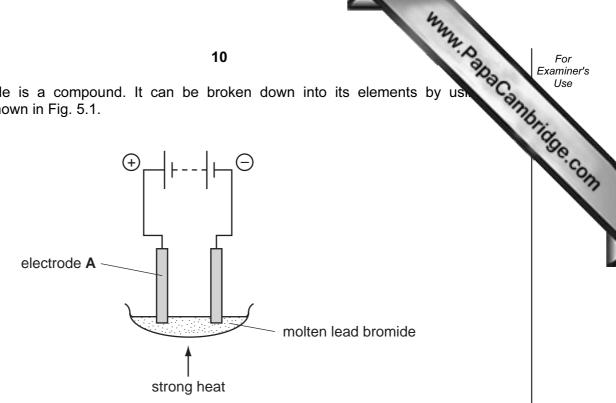
Bats are flying mammals. Table 4.1 shows information about the numbers of bats found in an undisturbed tropical rainforest and in a cacao plantation.

Table 4.1

habitat	number of different species of bats	number of bat species found only in that habitat	number of individual bats
undisturbed rainforest	27	14	423
cacao plantation	21	1	644

(a) Which habitat has the higher species diversity of bats?

Explain your answer.

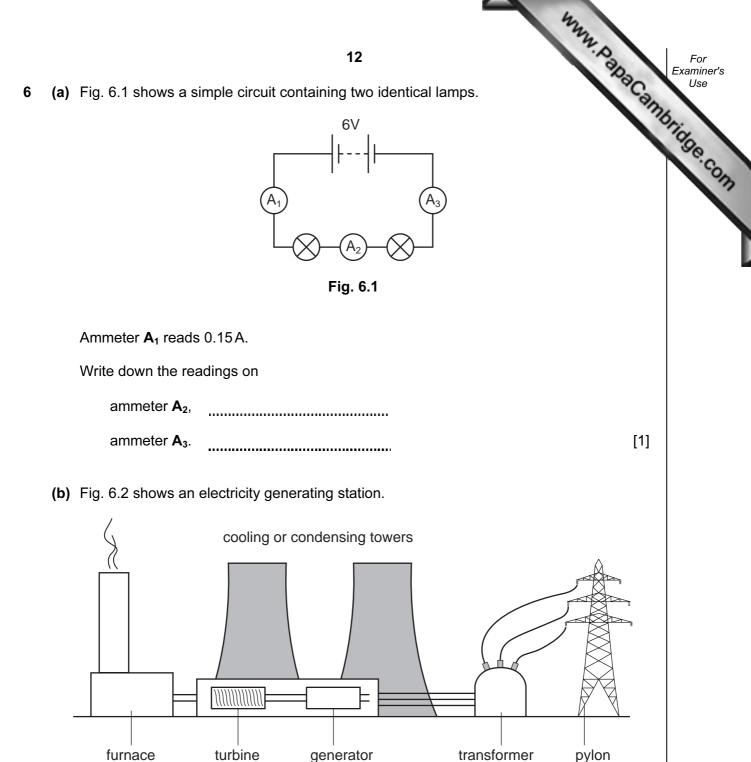

habitat		
explanatio	on	[1]

(b) Using the data in Table 4.1, suggest one reason, other than species diversity, why leaving some areas of tropical rainforests undisturbed is important for the conservation of bats.

[1]

(c)	9 Some bats feed on nectar.	For Examiner's Use
	habitats?	
	[1]	
	(ii) Explain how bats could help to increase the yield of beans from a cacao plantation.	
	[2]	
(d)	Complete these sentences, using some of the words in the list.	
cl	lones genetically not sexually unhealthy zygotes	
	Cacao trees can reproduce, using flowers and making seeds.	
	The new trees that are produced are different from each other.	
	Farmers can propagate cacao trees asexually. The new trees that are produced are	
	[3]	
(e)	Farmers allow other plants to grow underneath the cacao trees.	
	Explain how this could help to reduce soil erosion.	
	[2]	

Lead bromide is a compound. It can be broken down into its elements by us 5 apparatus shown in Fig. 5.1.



(a)	(i)	Name the process shown in Fig. 5.1.	
			[1]
	(ii)	Name the non-metallic element which is produced in this process.	
			[1]
	(iii)	Explain why the lead bromide shown in Fig. 5.1 has to be molten in order for process to work.	the
			[1]
	(iv)	Is electrode A in Fig. 5.1 the anode or the cathode?	
		Explain your answer.	
			[1]

10

		12	
		11	
(b)	•	11 process similar to that in Fig. 5.1 is used in the chemical industry to produce ortant element chlorine. The formula of the molecules in chlorine gas is Cl_2 . Explain what is meant by this formula.	Cam
	(i)	The formula of the molecules in chlorine gas is Cl_2 .	
		Explain what is meant by this formula.	
			[2]
	(ii)	Chlorine is used to treat water supplies.	
		Explain this use of chlorine.	
			[1]
((iii)	Chlorine reacts with aluminium to form aluminium chloride. The symbolic equation for this reaction is shown below.	
		Complete the balancing of this equation.	
		$2 Al + Cl_2 \longrightarrow 2 AlCl_3$	
			[1]

house

- (i) Name two fossil fuels which could be burned in the furnace to heat water in the boiler.
 - 1.

 2.

and boiler

[2]

	422	
	13	
(ii)	13 Complete the energy transfer statements below. In the furnace energy is converted into heat energy in the steam is converted into the In the turbine the energy in the steam is converted into the	Car
	In the furnace energy is converted into heat ene	rg,
	In the turbine the energy in the steam is converted into the	
	energy of the turbine.	
	The generator converts kinetic energy into energy.	[3]
(iii)	The electrical output from a power station is at $25000V$. The voltage is stepped to $400000V$ by a transformer. The number of turns on the primary coil is $20000V$	
	Calculate the number of turns on the secondary coil.	
	State the formula that you use and show your working.	
	formula used	
	working	
	turns	[3]
(iv)	Why does the electrical output from this power station have to be a.c.?	
		[1]

7 Fig. 7.1 shows a car in motion. The energy which is needed to make the car move from the burning of a mixture of air and fuel in the engine.

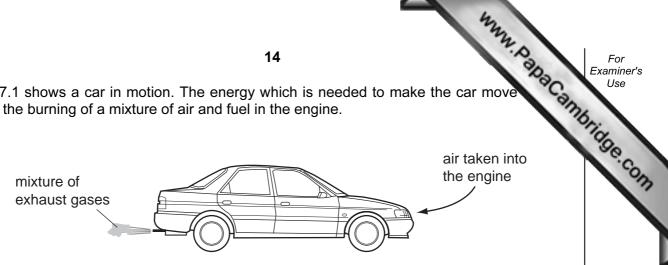


Fig. 7.1

- (a) Air is a mixture of gases.
 - (i) Which gas makes up the greatest percentage of the air?

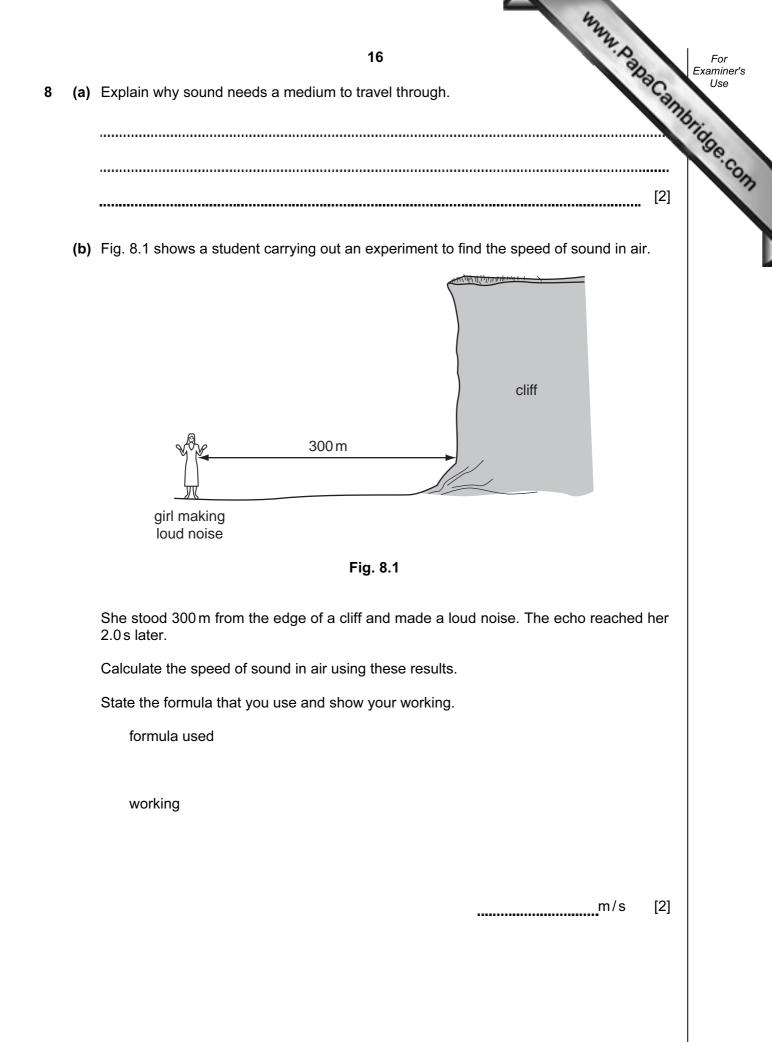
[1]

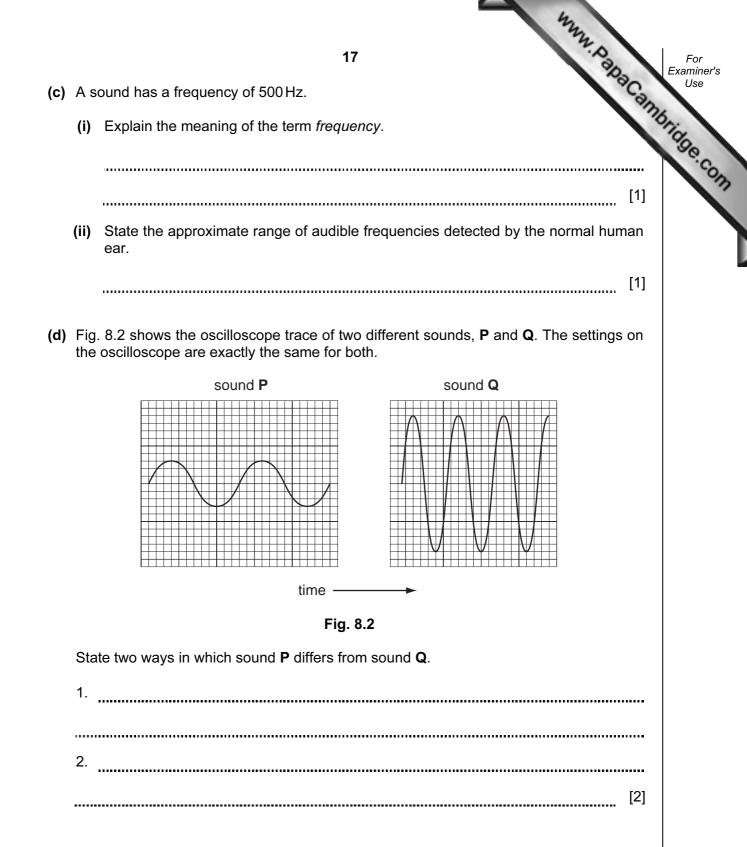
(ii) Describe one difference between a mixture of two gases and a compound formed from two gases.

......[1]

- (b) In some modern cars, two fuels are used. One of these is hydrogen gas and the other
 - (i) Explain why the fuel is said to be oxidised in the engine.

is gasoline, a mixture of hydrocarbons. Only one fuel is used at a time.


[1]


(ii) Suggest why, when hydrogen is used, the exhaust gases are not toxic (poisonous), but when gasoline is used the exhaust gases are toxic.

..... [2]

14

	15 http://www.p	Fo
(iii)	15 Describe a chemical test which could be used to show that the exhaust contain carbon dioxide.	Cannonia Cannonia
		 [2]
(c) The	e car battery contains sulphuric acid. State the chemical formula of sulphuric acid.	
(ii)	Underline one of the following substances to show which could be used	[1] to
S	neutralise a spillage of sulphuric acid safely . odium sodium carbonate sodium chloride sodium sulphate	[1]

			122	
			18	
9	(a)		18 Is in all of our tissues need a constant supply of glucose. Glucose is transformed in the blood. Name the part of the blood in which glucose is transported.	an
		(i)	Name the part of the blood in which glucose is transported.	
			[1	1]
		(ii)	Explain why cells in the human body need glucose.	
				••
				••
				2]
	(b)		nts make glucose in photosynthesis. They can then build the glucose into othe stances, including cellulose and proteins.	۶r
		(i)	State the function of cellulose in a plant.	
			[1	1]
		(ii)	Describe how you would test part of a plant to see if it contains proteins.	
				••
			[3	3]
	(c)		metabolic reactions in animals and plants are catalysed by enzymes. The perature at which an enzyme works best is called its optimum temperature.	е
		Pla	nt enzymes are denatured at lower temperatures than human enzymes.	
		(i)	Explain what is meant by the term <i>denatured</i> .	
				••
			[1	1]
		(ii)	Explain why it is an advantage to plants that their enzymes have a lower optimun temperature than human enzymes.	n
				••
			[1	1]

BLANK PAGE

Final Simulation Final Simulation <th>I II II II III III III IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</th> <th></th> <th>III IV V VI VII 0</th> <th>4 He Iteluum</th> <th>11 12 14 16 19 20 B C N O F Ne Boron Carbon 7 Ntrogen 0 xygen 9 Fuorine 10 Neon 5 Carbon 7 Ntrogen 8 0xygen 9 Neon 27 28 31 32 35.5 40 Alt Silion P S C1 Ar Auminum 13 16 16 13 18</th> <th>70 73 75 79 80 Ga Ge As Selenium 80 allum Germanum 33 Areanic 34 80 115 119 122 128 127 115 119 122 128 127 116 Sh Sh Te I 115 N Sh Te I 116 Sh Sh Te I 116 Sh Sh Te I 118 122 128 127 118 Sh Te I I 111 Sh Sh Sh Sh 118 Sh Sh Sh Sh 111 Sh Sh Sh S</th> <th>158162165167167169173175ThDyHoErTmYbLuTribinDyHoErTmYbTribinDyHoErTmYb666768690071BkCfEsFmMdNoBreteiumEnteriumFemuninNoLu9690100101102</th>	I II II II III III III IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		III IV V VI VII 0	4 He Iteluum	11 12 14 16 19 20 B C N O F Ne Boron Carbon 7 Ntrogen 0 xygen 9 Fuorine 10 Neon 5 Carbon 7 Ntrogen 8 0xygen 9 Neon 27 28 31 32 35.5 40 Alt Silion P S C1 Ar Auminum 13 16 16 13 18	70 73 75 79 80 Ga Ge As Selenium 80 allum Germanum 33 Areanic 34 80 115 119 122 128 127 115 119 122 128 127 116 Sh Sh Te I 115 N Sh Te I 116 Sh Sh Te I 116 Sh Sh Te I 118 122 128 127 118 Sh Te I I 111 Sh Sh Sh Sh 118 Sh Sh Sh Sh 111 Sh Sh Sh S	158162165167167169173175ThDyHoErTmYbLuTribinDyHoErTmYbTribinDyHoErTmYb666768690071BkCfEsFmMdNoBreteiumEnteriumFemuninNoLu9690100101102
23 ^v c 90 ¹ 23 ^v c	Image: Signature Image: Signature Image: Signature Image: Signature	iroup				59 64 Ni N	152 157 Eu Eu Europium Gadinium 63 64 Americium 66 Americium 96
90 1 1 2 2 2 2 6	Land International Action of the second and the second action of the sec			- T Hydrogen		56 101 28 Iron 27 101 8 Ru 48 Ruhanum 45 190 05 08 Mum 45 76	Promethum 61 Naphunum 93
	9 Be Be Be Magnesum 9 24 Magnesum 9 Be Be Magnesum 9 40 21 21 21 21 21 21 21 21 21 21 21 21 21					51 52 Vanadum Cr Vanadum Crromtum 23 93 96 Nicbum Molyberum 41 181 181 184 181 181 184 73 74 Tungsten	140 141 140 141 Ce Praseodymium 58 Praseodymium 232 Page Thortum Protocontinum 90 91

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of