

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

COMBINED SCIENCE

Paper 1 Multiple Choice

0653/01 October/November 2007 45 minutes

Additional Materials:

Multiple Choice Answer Sheet Soft clean eraser Soft pencil (type B or HB recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

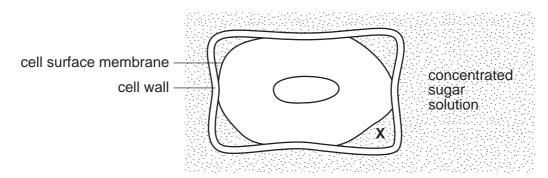
Do not use staples, paper clips, highlighters, glue or correction fluid.

Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers A, B, C and D.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.


Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet. A copy of the Periodic Table is printed on page 16.

This document consists of 16 printed pages.

- 1 Which cell has no DNA?
 - A goblet cell
 - B red blood cell
 - **C** sperm cell
 - D spongy mesophyll cell
- 2 A plant cell is placed in a sugar solution that is more concentrated than the cell sap.

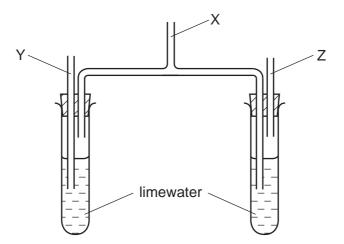
The diagram shows the appearance of the cell after 10 minutes.

Why does space **X** become filled with sugar solution?

- **A** The cell wall and cell surface membrane are both fully permeable.
- **B** The cell wall and cell surface membrane are both partially permeable.
- **C** The cell wall is fully permeable and the cell surface membrane is partially permeable.
- **D** The cell wall is partially permeable and the cell surface membrane is fully permeable.
- 3 Which gas is given off when the enzyme catalase is added to a solution of hydrogen peroxide?
 - A carbon dioxide
 - B carbon monoxide
 - C hydrogen
 - D oxygen

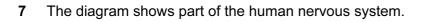
2

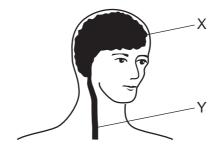
www.papaCambridge.com


www.papaCambridge.com A water plant is exposed to sunlight. After a short period of time bubbles are given 4 plant.

Which gas do the bubbles contain, and which process produces this gas?

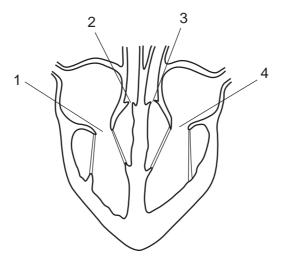
	gas	process	
Α	carbon dioxide	photosynthesis	
В	carbon dioxide	respiration	
С	oxygen	photosynthesis	
D	oxygen	respiration	


- 5 What is a symptom of vitamin C deficiency?
 - bleeding from skin and gums Α
 - В developing soft bones
 - low red blood cell count С
 - D teeth decay easily
- The diagram shows apparatus that can be used to demonstrate that the air breathed out by a 6 person contains more carbon dioxide than the air breathed in.


The person breathes in and out at X.

Where does air enter and leave the apparatus?

air enters at		air leaves at
A	Y	Y
в	Y	Z
С	Z	Y
D	Z	Z



What are X and Y?

	Х	Y	
A brain		effector	
B brain		spinal cord	
С	C receptor effector		
D	receptor	spinal cord	

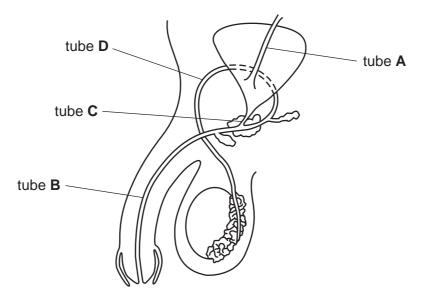
8 The diagram shows a section through the heart.

The ventricles contract and blood is forced into the arteries.

What is the state of valve 3 and 4 when this happens?

	valve 3	valve 4	
Α	closed	closed	
В	closed	open	
С	open	closed	
D	open	open	

www.Papacambridge.com



9 It is possible to grow plants that are genetically identical.

What are plants grown in this way called?

- A clones
- B gametes
- C seeds
- D zygotes
- 10 The diagram shows the male reproductive system.

Which tube is cut when carrying out male sterilisation (a vasectomy)?

- 11 In which part of a plant is the embryo found?
 - A anther
 - B pollen grain
 - C seed
 - D stigma
- **12** Jamal and Javan are identical twins, but Jamal is 10 kg heavier than Javan.

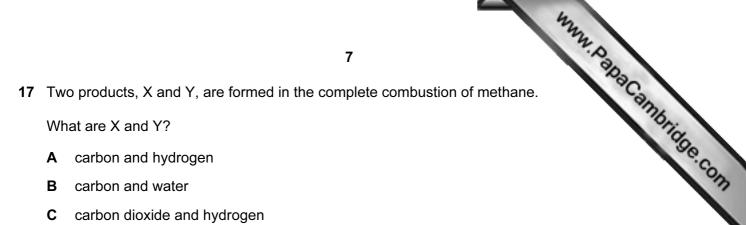
What will have caused the difference in their weights?

	genes	environment	
Α	\checkmark	\checkmark	key
в	\checkmark	x	√ = yes
с	X	\checkmark	x = no
D	X	x	

13 The diagram shows a food chain.

www.papacambridge.com

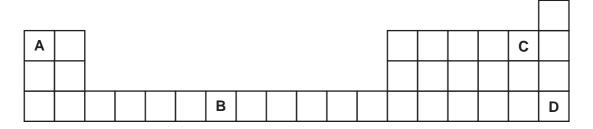
What is represented by the black arrows and by the white arrows?


	black arrows	white arrows	
Α	chemical energy	heat	
в	chemical energy	sunlight	
С	heat chemical ener		
D	sunlight	chemical energy	

14 When a metal X is added to water, it reacts and two ions are formed.

What could these ions be?

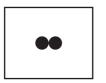
- **A** Cu²⁺, H⁺
- $\textbf{B} \quad \textbf{Cu}^{2+}, \textbf{OH}^{-}$
- $\mathbf{C} = \mathbf{N}\mathbf{a}^{+}, \mathbf{H}^{+}$
- D Na⁺, OH[−]
- 15 Which two elements combine to form an ionic compound?
 - A carbon and oxygen
 - B chlorine and magnesium
 - C copper and zinc
 - D hydrogen and oxygen
- 16 Which displayed formulae correctly represent a molecule of carbon dioxide and of nitrogen?


	carbon dioxide, CO ₂	nitrogen, N ₂
Α	0–C–O	N–N
В	0–C–O	N≡N
С	O=C=O	N–N
D	O=C=O	N≡N

What are X and Y?

- carbon and hydrogen Α
- В carbon and water
- carbon dioxide and hydrogen С
- carbon dioxide and water D
- **18** The diagram shows a simplified outline of the Periodic Table.

Which letter shows the position of a metal with a low melting point?

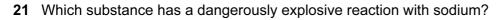


19 An oxide of lead is changed to lead by heating it with carbon.

 $Pb_xO_y + 2C \longrightarrow 3Pb + 2CO_2$

What is the formula of this oxide of lead?

- Pb₄O₃ Pb₂O₃ $C Pb_3O_4$ D Α В Pb_3O_2
- 20 The diagrams show molecules of four gases present in clean air. Different circles represent atoms of different elements.



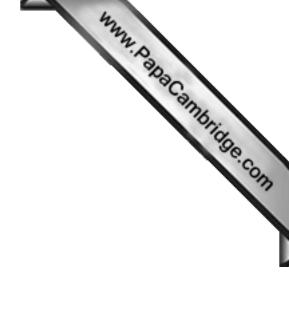
Which elements could be shown as \bullet and \bigcirc ?

	•	0
Α	hydrogen	nitrogen
в	hydrogen	oxygen
С	oxygen	hydrogen
D	oxygen	nitrogen

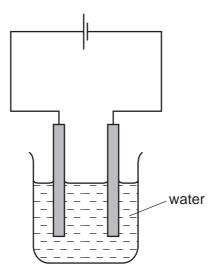
7

8

www.papacambridge.com


- A ammonia
- B hydrogen
- C hydrochloric acid
- D nitrogen
- 22 Aluminium oxide, dissolved in melted cryolite, is electrolysed.

Aluminium is produced by1..... and energy is2......


Which words correctly complete the gaps?

	gap 1	gap 2
Α	oxidation	given out
В	oxidation	used up
С	reduction	given out
D	reduction	used up

- 23 Which word equation shows a thermal decomposition?
 - **A** ammonia + nitric acid \rightarrow ammonium nitrate
 - **B** hydrogen + oxygen \rightarrow water
 - $\textbf{C} \quad \text{magnesium carbonate} \rightarrow \text{magnesium oxide} + \text{carbon dioxide}$
 - $\textbf{D} \quad \text{potassium chloride + silver nitrate} \rightarrow \text{potassium nitrate + silver chloride}$

24 The diagram shows an apparatus used for electrolysis.

Which substance, when added to water, would act as an electrolyte?

- A calcium carbonate
- B copper(II) chloride
- **C** graphite
- D sugar
- 25 Are iron and sodium hydroxide obtained by electrolysis?

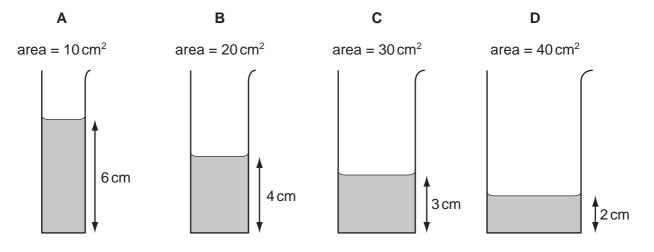
	iron	sodium hydroxide
Α	\checkmark	1
в	\checkmark	×
С	x	1
D	×	x

26 The description below of a plastic is incomplete.

To make a plastic,1..... of a2..... combine to form a long chain3......

Which words correctly complete the gaps?

	gap 1	gap 2	gap 3
Α	atoms	monomer	polymer
в	atoms	polymer	monomer
С	molecules	monomer	polymer
D	molecules	polymer	monomer


27 Ethanol, hydrogen and methane are used as fuels.

Which line in the table is correct?

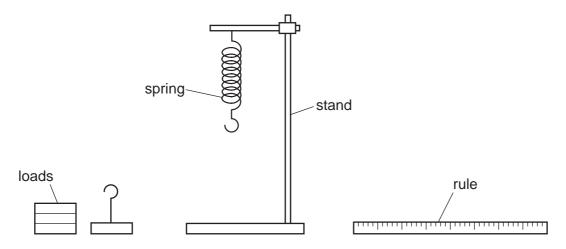
	ethanol	hydrogen	methane
Α	solid	gas	gas
в	solid	liquid	liquid
С	liquid	gas	gas
D	liquid	liquid	liquid

28 Some water is poured into four tubes of different cross-sectional areas.

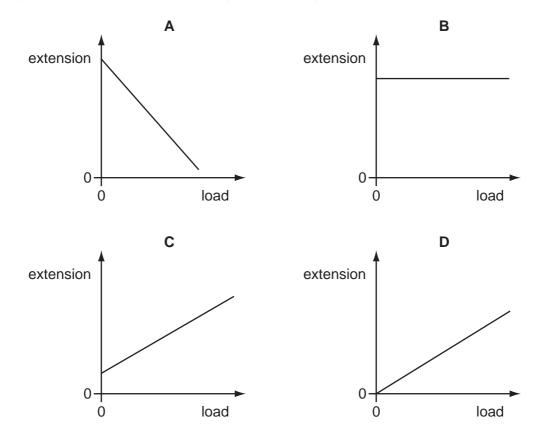
Which tube contains the largest volume of water?

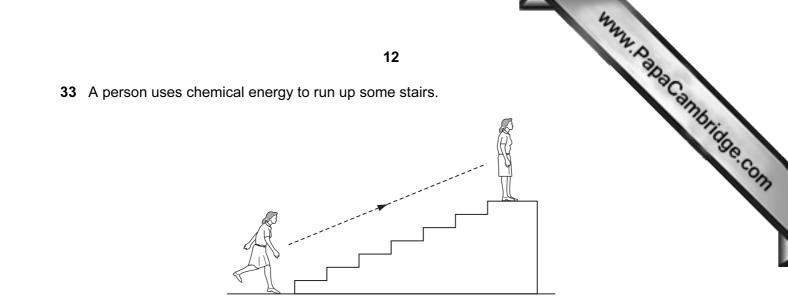
29 Four students try to explain what is meant by acceleration.

Which student makes a correct statement?


- A It is related to the changing speed of an object.
- **B** It is the distance an object travels in one second.
- **C** It is the force acting on an object divided by the distance it travels in one second.
- **D** It is the force acting on an object when it is near to the Earth.
- 30 What are the correct units for force and for weight?

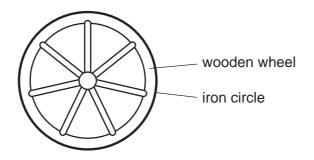
	force	weight
Α	kg	kg
в	kg	Ν
С	Ν	kg
D	Ν	Ν


www.papacambridge.com 31 A metal drum has a mass of 200 kg when empty and 1000 kg when filled when methylated spirit.


What is the density of methylated spirit?

- $0.0050 \, \text{kg} \, / \, \text{m}^3$ Α
- 0.11 kg/m³ В
- $800 \text{ kg}/\text{m}^3$ С
- $1000 \text{ kg}/\text{m}^3$ D
- 32 A spring is suspended from a stand. Loads are added and the extensions are measured.

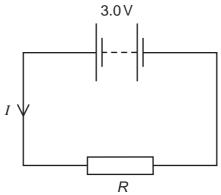
Which graph shows the result of plotting extension against load?



She stops at the top of the stairs.

What has the chemical energy been converted to when she is at the top of the stairs?

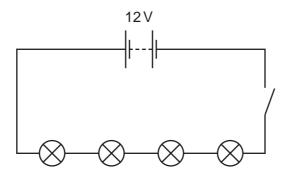
- **A** kinetic energy and potential energy
- B kinetic energy and nuclear energy
- **C** potential energy and heat energy
- D nuclear energy and heat energy
- 34 A wooden wheel can be strengthened by putting a tight circle of iron around it.



Which action would make it easier to fit the circle over the wood?

- A cooling the iron circle
- B heating the iron circle
- **C** heating the wooden wheel
- D heating the wooden wheel and cooling the iron circle
- 35 Which statement refers to convection?
 - A It does not involve energy transfer.
 - **B** It is the transfer of heat energy without the movement of particles.
 - **C** It only occurs in liquids or gases.
 - **D** It only occurs in solids.

36 The circuit shows a current *I* in a resistor of resistance *R*.



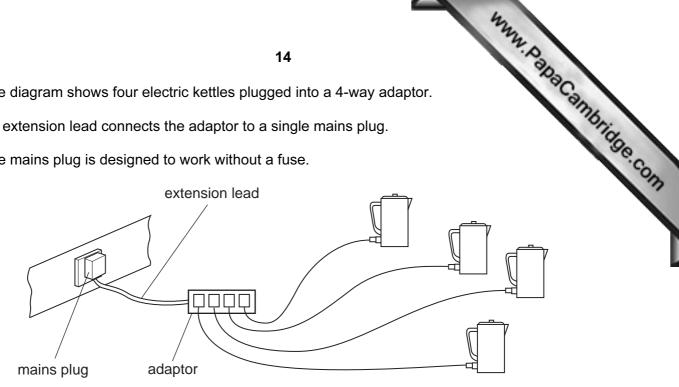
Which line gives possible values of I and R?

	I/A	R/Ω
Α	1.5	1.5
в	1.5	2.0
С	6.0	2.0
D	4.0	12

37 Four lamps are connected in a circuit as shown in the diagram.

Each lamp is designed to operate at 12 V.

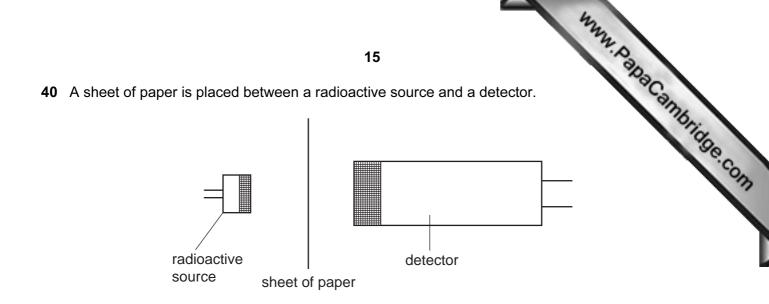
The circuit is now switched on.


Which statement is correct?

- A Each lamp can be switched off independently.
- **B** If one lamp breaks all the others will stay alight.
- **C** The current is the same in all the lamps.
- **D** The lamps will all light at normal brightness.

38 The diagram shows four electric kettles plugged into a 4-way adaptor.

An extension lead connects the adaptor to a single mains plug.


The mains plug is designed to work without a fuse.

Why is this use of the adaptor dangerous?

- Α The heating elements in the kettle will overheat.
- В The extension lead connecting the adaptor to the mains plug will overheat.
- С The leads connecting the kettles to the adaptor will overheat.
- D The water in the kettles will overheat.
- **39** How is electricity transmitted over large distances and why is it transmitted in this way?

	how	why
Α	at high voltage	for safety
В	at high voltage	to reduce energy loss
С	at low voltage	for safety
D	at low voltage	to reduce energy loss

Which types of radiation can pass through the paper?

- A alpha-particles and beta-particles only
- **B** alpha-particles and gamma-rays only
- C beta-particles and gamma-rays only
- D alpha-particles, beta-particles and gamma-rays

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the

DATA SHEET The Periodic Table of the Elements

$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									ß	Group									
1 1		=												≡	2	>	N	١١	0	
1 1	1 1								Hydrogen											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \frac{1}{2} \frac{1}{2} \frac{1}{11} $	9 Beryllium	F	[]								Fluorine		1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \frac{1}{2} 1$	24 Mg Magnesium	E 1											27 A1 Auminium 13	28 Silicon	31 Phosphorus 15	32 S Sulphur 16	35.5 C 1 Chlorine 17		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	01 03 06 101 103 104 103 105 103	40 Ca Calcium 20	E	45 Sc sandium 22	48 Ti Itanium	51 Vanadium	52 Chromium 24	55 Manganese 25	56 F e Iron 26			64 Cu Copper 29	65 Zinc 30	70 Ga 31	73 Ge Germanium 32	75 AS Arsenic 33	79 Se Selenium 34	80 Bromine 35	84 Krypton 36	1
	$\frac{178}{2} \frac{178}{12} \frac{181}{12} \frac{184}{12} 18$	88 Sr Strontium 38	. 5	89 ttrium 40	91 Zr ^{sonium}	93 Nb iobium	96 Mo Molybdenum 42	Tc Technetium 43	101 Ru Ruthenium 44	103 Rh ođium 45	106 Pd Palladium 46		112 Cdd Cadmium 48	115 In Indium	119 Sn 50	122 Sb Antimony 51	128 Te Tellurium 52	127 I fodine 53	131 Xe 54	6
140 141 144 Pm 150 152 157 158 162 167	1 140 141 144 160 151 157 157 156 165 167 165 167 165 167 165 167 166 166	137 Ba ^{Barium} 56	0 ⊲	139 La nthanum * 72	178 Hf tafnium	181 Tan talum '3	184 V Tungsten 74	186 Re Rhenium 75	190 OS Osmium 76	192 Ir 77	195 Ptatinum 78		201 Mercury 80	204 T 1 Thallium	207 Pb Lead	209 Bismuth 83	Polonium 84	At Astatine 85	Radon 86	
100 141 144 140 140 150 157 159 162 165 165 165 167 165 <td>$\frac{140}{6} \frac{141}{7} \frac{144}{6} \frac{141}{7} \frac{144}{6} \frac{150}{7} \frac{150}{6} \frac{157}{7} \frac{159}{6} \frac{157}{7} \frac{159}{7} \frac{167}{7} \frac{169}{7} \frac{167}{7} \frac{169}{7} \frac{167}{7} \frac{169}{7} \frac{167}{7} \frac{169}{7} \frac{167}{7} \frac{169}{7} \frac{167}{7} \frac{169}{7} 16$</td> <td>88 Rad R 22</td> <td>226 Radium</td> <td>227 AC cetinium</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>1</td>	$\frac{140}{6} \frac{141}{7} \frac{144}{6} \frac{141}{7} \frac{144}{6} \frac{150}{7} \frac{150}{6} \frac{157}{7} \frac{159}{6} \frac{157}{7} \frac{159}{7} \frac{167}{7} \frac{169}{7} \frac{167}{7} \frac{169}{7} \frac{167}{7} \frac{169}{7} \frac{167}{7} \frac{169}{7} \frac{167}{7} \frac{169}{7} \frac{167}{7} \frac{169}{7} 16$	88 Rad R 22	226 Rad ium	227 AC cetinium	-										-		-	-	-	1
Tracs 232 238 238 Track 232 238 238 Track 24 Th Pa U Np Pu Am Cm BK Cf Es Fm Noturn Protocolium Protocolium Petronium Petronium 94 95 95 95 95 95 95 95 95 95 95 95 95 95	Tradie The formation of	stine	oid	id series series	ى	140 Ce Cerium	141 Pr Fraseodymium 59		Promethium 61		152 Eu ^{Europium}	157 Gd Gadolinium 64	159 Tb 65	162 Dysprosium 66	165 HOI Holmium 67	167 Er Erbium 68	169 Thulium 69	173 Yb 70	175 Lu Lutetium 71	
		σ × σ	~ <u>~</u>	a = relative atomic r K = atomic symbol) = proton (atomic)	number	232 7 horium 0	Pa Protactinium 91	238 Uranium 92	Neptunium 93	Plutonium 94	Americium 95	96	BK Berkelium 97	Cf Californium 98	Einsteinium 99	Fermium 100	Mandelevium 101	Nobelium 102	Lr Lawrencium 103	MN.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of