

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

dride con

*	
ū	
4	
_	
_	
Ν	
0	
œ	
W	
_	
7	

CENTRE NUMBER	CANDIDATE NUMBER	

COMBINED SCIENCE

0653/02

Paper 2 (Core)

May/June 2009

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	For Examiner's Use	
1		
2		
3		
4		
5		
6		
7		
8		
9		
Total		

This document consists of 21 printed pages and 3 blank pages.

Fig. 1.1

(a)	Name pa	rts A , B and C .	
	Α		
	В		
	С		[3]
(b)	Explain h	ow teeth help with digestion.	
			[2]
(c)	Name or and bone	ne mineral and one vitamin that are essential for the growth of strong teas.	eth
	mineral		
	vitamin		[2]

www.PapaCambridge.com (a) A student investigated how a change in potential difference across a lamp affect 2 current flowing through it.

She used wires to connect the components shown in Fig. 2.1 to make a circuit.

Fig. 2.1

(i) Using the correct symbols from Fig. 2.1, draw a diagram to show the circuit she used.

г	2	٦
ı	. 1	1
	v	1

(ii) Explain why the variable resistor is included in the circuit. [1] (iii) Her results are shown in Table 2.1.

Table 2.1

Her results are shown in Ta	4 able 2.1.	resistance of lamp filament/Ω	For iner's
	Table 2.1		Dride
potential difference across lamp/V	current through lamp/A	resistance of lamp filament/ Ω	Secon
4	1.2	3.3	
8	1.5		
12	1.7	7.1	l L

Complete the table by calculating the missing resistance and writing your answer in the empty box.

State the formula that you use and show your working.

formula

working

[2]

Identify and explain the electrical hazard shown in Fig. 2.2.

Fig. 2.2

[2]

3 (a) The names of six elements are shown below.

							42	
				6		Ì	W. D.	1
(a)	The nar	nes of six	elements a	re shown belo	W.			Can
	carbo	on c	hlorine	cobalt	neon	silicon	sodium	1
	Choose	the eleme	ent from the	list			sodium	
	which	is the leas	t reactive,					
	which	is used to	sterilise dri	nking water,				
	which	is a metal	that forms o	coloured comp	ounds		•••••	[3]
(b)	Fig. 3.1	shows a	diagram of a	an atom.				
	(i) Sta	te the nuc	eleon numbe	Fig. 3.1		m shown in Fig	. 3.1.	[1]

Explain your answer briefly. element

(ii) State the name of the element made of atoms like the one in Fig. 3.1.

explanation

ent A read For iner's

(c) Fig. 3.2 shows a test for a gas which is produced when a solid element **A** reaction **B**.

Fig. 3.2

Name the gas produced in this reaction, and suggest the names of element ${\bf A}$ and solution ${\bf B}$.

gas	
element A	
solution B	[3]

Fig. 4.1 shows an arum lily.

Arum lilies have flowers that are pollinated by insects.

www.PapaCambridge.com There are many tiny flowers on a stalk, inside a large white structure called a spathe.

Fig. 4.1

(a) (i) Name the part of the flower in which pollen is made.

		[1]
(ii)	What does a pollen grain contain?	
		[1]
(iii)	Explain the meaning of the term <i>pollination</i> .	

(b) Arum lilies produce heat energy to raise the temperature of the flowers. This attract insects to the flowers. They use respiration to do this.

www.papaCambridge.com A researcher investigated whether there was a relationship between the temperature of the flowers inside an arum lily spathe and the rate of oxygen use.

He took 15 arum lilies, and measured the temperature and rate of oxygen use for each one.

Fig. 4.2 shows his results.

Fig. 4.2

(i)	Describe the relationship between the temperature inside the spathe and the rate of oxygen use by the arum lily.
	[1]
(ii)	Explain the reasons for the relationship you have described.
	[2]

(c)	The fuel that the arum lilies use to produce the heat energy is glucose.	3
	Describe how the lilies obtain a supply of glucose.	3
	[2]	
(d)	The leaves of arum lilies contain palisade cells, which are typical plant cells containing	

Complete the diagram of a palisade cell. Include these structures in your labels.

cell membrane	cell wall	chloroplast
cytoplasm	nucleus	vacuole

BLANK PAGE

Please turn over for Question 5.

•	⊢0	ľ	
•	· .		
	a i	ne	r's

- www.papaCambridge.com The Vikings, who lived in Scandinavia about 1200 years ago, sailed in boats 5 longships across the sea to Britain.
 - (a) (i) They travelled 900 km in 150 hours.

Calculate their average speed for this journey.

State the formula that you use and show your working.

formula

working

	km/h	[2]
--	------	-----

(ii) At one stage on their journey they were travelling at 7.2 km/h.

Calculate their speed in m/s.

Show your working.

[1]

(b) A longship was moving at constant speed. The diagram shows four forces acting on it.

Name two forces which must be equal in size.

Г4	77
11	i I
г.	J

(c)	The Vikings used animal furs to make clothes to keep them warm.
	Explain in terms of conduction and convection how fur clothes would have kept the Vikings warm.
	[3]
(d)	The volume of the wood used to construct the longship was 9 m ³ .
	If the density of the wood was 800 kg/m³, calculate the mass of the wood used.
	State the formula that you use and show your working.
	formula
	working
	kg [2]
(e)	The major energy source used to propel the longship was the wind. Wind is a renewable energy source.
	(i) Name one other renewable energy source.
	[1]
	(ii) Name one non-renewable energy source.
	[1]

www.PapaCambridge.com (a) Fig. 6.1 shows industrial apparatus used for the fractional distillation of pell 6 (crude oil).

Fig. 6.1

Draw lines on Fig. 6.1 connecting the fractions, P, Q, R and S to the correct boiling point range. The line for fraction **Q** has been drawn for you. [2]

(b) Plastics and steel are both used to make buckets.

Fig. 6.2

(i)	Suggest buckets.	one	reason	why	plastics	are	suitable	materials	from	which	to	make
												[1]

(ii)	Buckets made from steel must be protected from rusting.	Car
	Name the element and the compound which react with mild steel to form rust.	
	element	
	compound	[2]
iii)	Describe briefly one suitable method of protecting a steel bucket from rusting.	
		[1]
iv)	Name the element which is oxidised when rust forms.	
		[1]
(v)	Name the alloy from which cutlery is made.	
	cutlery	
	Fig. 6.3	
		[1]

- 7 Read the following description of a food web.
 - Ants collect leaves from trees and take them into their nests.
 - A fungus grows on the leaves and breaks them down.
 - The ants eat the leaves, and also the fungus.
 - Small birds eat the ants, and hawks eat the small birds.
 - Pangolins eat only ants.

Fig. 7.1

(a) In the space below, complete a food web that includes all of the organisms described in Fig. 7.1.

		the the tenth of t	
		17 A. D.	
(b)	(i)	Name the producer in this food web.	For iner's
			For iner's
	(ii)	Name a decomposer in this food web.	S. COM
		[1]
(c)	Dan	ngolins are becoming rare in some parts of the world.	
(6)	гаі	igonins are becoming rare in some parts of the world.	
		e the information in Fig. 7.1, and your own knowledge, to explain why it is important prevent deforestation if we want to conserve pangolins.	nt
		ı	21

www.PapaCambridge.com (a) A hotel has a lift (elevator). It moves through a vertical height of 3 m between 8

Fig. 8.1

(i)	A passenger travels in	the lift. T	he passenger	has a	mass of	80 kg	and	weighs
	800 N. The mass of the	empty lift i	is 1200 kg.					

Calculate the total weight of the passenger and lift.

Show your working.

	[0]
N	[2]

(ii) Calculate the work done when the lift and passenger move up three floors, from Floor 1 to Floor 4.

State the formula that you use and show your working.

formula

working

 J	[2

(b)	(i)	In the restaurant, music is being played through loudspeakers.				
		Explain how the sound coming from the loudspeakers reaches the people in restaurant.	th			
			[2]			
	(ii)	The amplitude of the sound waves is increased.				
		What effect will this have on the sounds heard by the people in the restaurant?				
			[1]			

For iner's 9 Fig. 9.1 shows the main steps in a method used by a student to make salts.

In separate experiments the student reacted the carbonate of a metal and the oxide of metal with dilute sulfuric acid.

Fig. 9.1

(a) Name processes A and B shown in Fig. 9.1.

process A	
process B	[2]

(b) Suggest and explain why the student used powdered solids in the reactions with dilute sulfuric acid. [2]

(c)	(i)	Name the salt which is produced when zinc oxide reacts with dilute sulfuric a riner's complete the word equation for the reaction of copper carbonate with sulfuric acid.
	(ii)	Complete the word equation for the reaction of copper carbonate with sulfuric acid.
cop	per	sulfuric
(d)	(i)	The salt calcium chloride is made when calcium oxide reacts with hydrochloric acid. The symbolic equation for this reaction is shown below.
		CaO + HC l \rightarrow CaC l_2 + H $_2$ O Explain whether or not this equation is balanced.
		[2]
	(ii)	A student reacted calcium oxide with hydrochloric acid using the apparatus shown in Fig. 9.2.
		thermometer hydrochloric acid Fig. 9.2
		The student noticed that the temperature of the mixture increased.
		Explain this observation.

[1]

BLANK PAGE

BLANK PAGE

The Periodic Table of the Elements **DATA SHEET**

									_
	0	4 He Helium	20 Neon	40 Ar Argon	36	X Xenon 54	Radon 86		175 Lu Lutetium
	II/		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85		173 Yb Ytterbium
	IN		16 Oxygen	32 S Sulfur	79 Selenium	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium
	>		14 N itrogen 7	31 P Phosphorus 15	75 AS Arsenic	Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium
	<u> </u>		12 Carbon	28 Si lcon	73 Ge Germanium	3n Sn Tin 50	207 Pb Lead 82		165 Ho Holmium
	=		11 Boron 5	27 A1 Aluminium 13	70 Ga Gallium 31	115 In Indium	204 T 1 Thallium		162 Dy Dysprosium
					65 Zn Zinc 30	Cadmium 48	201 Hg Mercury 80		159 Tb Terbium
					64 Copper	108 Ag Silver	197 Au Gold		157 Gd Gadolinium
Group						Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium
Gre					59 Co Cobalt	Rhodium 45	192 Ir Iridium		150 Sm Samarium
		1 Hydrogen			56 Fe Iron	Ruthenium	190 Os Osmium 76		Pm Promethium
					Mn Manganese	Tc Technetium 43	186 Re Rhenium 75		144 Na Neodymium
					Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Pr Praseodymium
					51 V Vanadium 23	93 Niobium 41	181 Ta Tantalum 73		140 Ce Cerium
					48 Ti Titanium 22	91 Zr Zirconium 40	178 Hf Hafnium		
					Scandium 21	89 < Yitrium 39	139 La Lanthanum *	227 Ac Actinium 89	series eries
	=		9 Be Beryllium	24 Mg Magnagnam Magnesium	40 Ca Calcium	Sr Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series
	_		7 L.i Lithium	23 Na Sodium	39 K Potassium	Rb Rubidium	133 Cs Caesium 55	Francium 87	*58-71 Le

www.papaCambridge.com 169 **Thuli**um Mo 167 **Er**bium Fm Es ర ਲ Curium Am Samarium Pu Ра ፤ ፈ 140 Cerium 232 **1** Thorium 90 b = proton (atomic) number a = relative atomic mass

X = atomic symbol

Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.