

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Chemistry practical notes for this paper are printed on page 12.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
Total	

This document consists of 9 printed pages and 3 blank pages.

- 1 Some plants show differences in the structure of a leaf growing in a sunny area (su and a leaf growing in a shaded area (shade leaf).
- www.papaCambridge.com (a) (i) You are supplied with two leaves, labelled sun leaf and another leaf labelled shade leaf.

Make drawings of the two leaves in the spaces provided to show the difference in size.

		sun leaf	shade leaf [2	ː]
	leng (ii)	gth of sun leaf = mm Measure and record the maximum le the petiole (stalk). Write your measure	length of shaded leaf = mm [2 ngth of each leaf on your drawing, excluding ements below each diagram.	-
(b)	 One leaf has a larger surface area than the other. Suggest an advantage to the leaf with the larger surface. 			
			[1	1]

(c) Fig. 1.1 shows cross sections of a sun leaf and a shade leaf as viewed microscope.

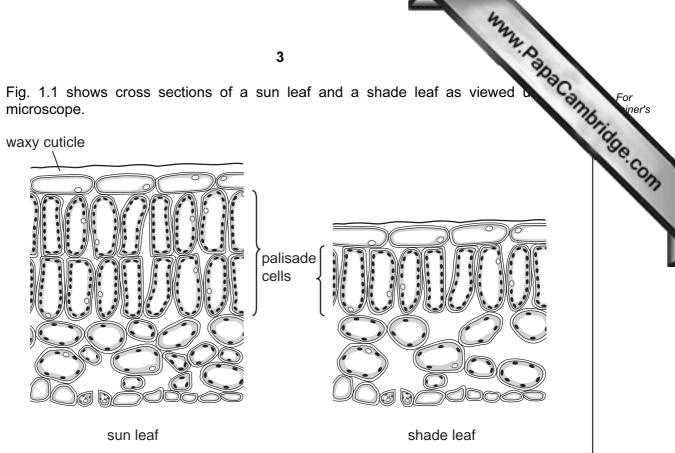


Fig. 1.1

(i) Construct a table to compare the two diagrams shown in Fig. 1.1. Include the following features; thickness of leaf, number of palisade cells, size of air spaces.

(ii) The sun leaf usually has a thicker cuticle than the shade leaf. The cuticle is a waxy layer covering the leaf. Suggest an advantage that this thicker cuticle gives to the sun leaf. [1]

.....

[4]

- www.papaCambridge.com 2 You are going to make some measurements on a test-tube before using it to determ density of liquid P.
 - (a) Measure and record the length, *l*, and the internal diameter, **D**, of the test-tube.

 $\pi \times \left(\frac{\mathbf{D}}{2}\right)^2 \times l$

```
D = _____ mm
```

Using these measurements, calculate the volume of the tube using the formula

volume of test-tube = _____mm³ [3]

(b) (i) Hold the test-tube in the glass beaker labelled water and add dry sand to the tube until it floats with its open end about 10 mm above the surface. Place a rule in the water beside the tube and measure the depth, d_1 from the water surface to the bottom of the test-tube. See Fig. 2.1. You may need to hold the tube upright to do this.

Record this value, \mathbf{d}_1 in Table 2.2 on page 5.

ruler test-tube sand water

(ii) Remove the test-tube from the water and wipe the outside, taking care not to lose any sand. Do not let water splash into the test-tube. Place the test-tube in the beaker labelled liquid P and as before, measure the depth, d₂.

Record this value, d_2 in the first line of Table 2.2.

(iii) Remove the test-tube and wipe the outside. Empty out a small amount of sand so that it floats in the water with the open end about 12 or 13 mm above the surface.

Measure and record d_1 , the new depth in Table 2.2.

4

As before, wipe the outside of the test-tube and transfer it to the liquid P.

Measure and record the new depth d_2 in Table 2.2.

www.papaCambridge.com (iv) Repeat the process with the tube floating about 2 or 3 mm higher in water each time, until you have five sets of readings of d_1 and d_2 .

Record all your values in Table 2.2.

d₁in water/mm	d₂in liquid P/mm

[3]

(c) On the grid provided on page 6 (Fig. 2.2), plot a graph of d_1 (vertical axis) against d_2 . Draw the best straight line through your points.

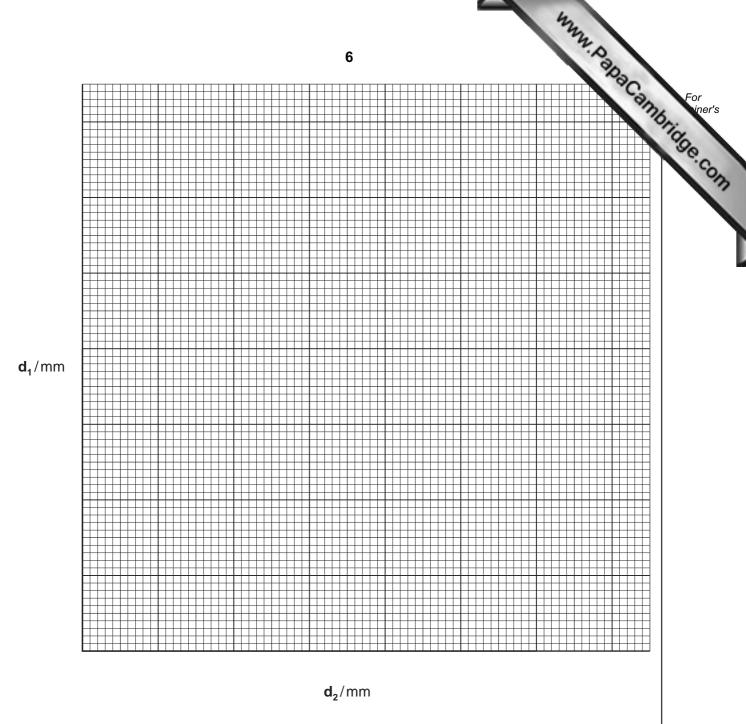


Fig. 2.2

[3]

(d) Calculate the gradient of the line, indicating on your graph the values chosen to enable you to do this. The gradient is numerically equal to the density of **liquid P** in grams per centimetre.

gradient of line = [1]

BLANK PAGE

Please turn over for Question 3.

- www.PapaCambridge.com 3 X, Y and Z are solutions of the same acid but different concentrations. You will use solution A, to find which of the acid solutions is the most concentrated. You will also out tests to identify the acid.
 - (a) Using the dropping pipette provided, and no other apparatus, estimate the volume of a single drop of liquid.

cm³ volume of 1 drop = [1]

(b) (i) Using the small measuring cylinder, place 5 cm^3 of solution **X** in a test-tube. Add 2 drops of the indicator. Use the dropping pipette to add the alkali, solution A, a drop at a time, counting the drops. Shake the tube after each addition until a pink colour is produced.

Record the number of drops in Table 3.1.

(ii) Repeat the procedure using solution, Y, and then Z.

Record the number of drops in Table 3.1.

solution	number of drops
X	
Y	
Z	

[3]

(c) Which of the solutions is the most concentrated? Explain your answer.

.....

......[1]

(d) Place about 2 cm^3 of solution **X** in a test-tube. Add a piece of magnesium. Test any gas given off with a glowing splint and a lighted splint.

Record your observation and name the gas given off.

glowing splint -----

lighted splint

name of the gas _____

[3]

www.papacambridge.com (e) Place about 2 cm³ of solution X in a test-tube and add a few drops of aqueous nitrate.

[2]

9

Record your observation and name the acid in solution X.

observation	

name of the acid

BLANK PAGE

BLANK PAGE

CHEMISTRY PRACTICAL NOTES

Test for anions

Test for anions	12 CHEMISTRY PRACTICAL NO	TES hhm. BabaCannhridge.co
anion	test	test result
carbonate (CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide produced
chloride (C <i>l</i> ·) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
nitrate (NO ₃ ⁻) [in solution]	add aqueous sodium hydroxide then aluminium foil; warm carefully	ammonia produced
sulfate (SO ₄ ²⁻) [in solution]	acidify then add aqueous barium chloride <i>or</i> aqueous barium nitrate	white ppt.

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
ammonium (NH_4^+)	ammonia produced on warming	-
copper(II) (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution

Test for gases

gas	test and test results
ammonia (NH ₃)	turns damp red litmus paper blue
carbon dioxide (CO ₂)	turns limewater milky
chlorine (Cl ₂)	bleaches damp litmus paper
hydrogen (H ₂)	"pops" with a lighted splint
oxygen (O ₂)	relights a glowing splint

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.