

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

vs and dide.c

*	
6	
7	
S.	
∞	
w	
0	
0	
∞	
4	
œ	

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

COMBINED SCIENCE

0653/21

Paper 2 (Core)

May/June 2011

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	For Examiner's Use				
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
Total					

This document consists of 21 printed pages and 3 blank pages.

ada

1 (a) A student carried out an experiment to find which substances in the environce caused nails made of mild steel to become rusty.

She selected three identical nails and placed them in sealed test-tubes, **A**, **B** and **C**, as shown in Fig. 1.1.

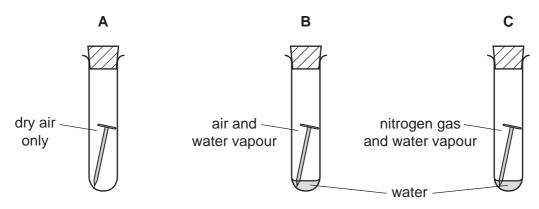


Fig. 1.1

The student observed that the nail in test-tube **B** was the only one to become rusty.

did not.) S
	•••
	•••
[3]

www.PapaCambridge.com (b) Bicycle chains that are made of steel are usually covered in oil made of hydro molecules. This helps to prevent rusting.

- (i) State which of the chemical formulae, V to Z, represent hydrocarbons. Explain your answer.
 - H_2OC ٧
 - $C_2H_2 \\$ W
 - $C_6H_{12}O_6$ X
 - $C_{10}H_{22}$ Υ
 - **HCN** Ζ

	chemical formulae	
	explanation	
		[2]
(ii)	Suggest one property of a hydrocarbon oil which makes it suitable for use as barrier to prevent rusting.	s a
		[1]
(iii)	Hydrocarbons have many uses.	
	State one important use of hydrocarbons, other than preventing rusting.	
		[1]

2 (a) Fig. 2.1 shows a crane powered by an electric motor.

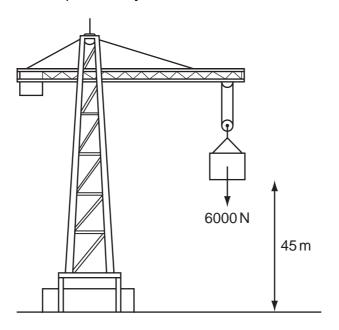


Fig. 2.1

Calculate the work done raising a load of 6000 N by a distance of 45 m.

State the formula that you use and show your working.

formula used

working

www.PapaCambridge.com (b) Fig. 2.2 shows the circuit used by a student to operate the electric motor of a crane.

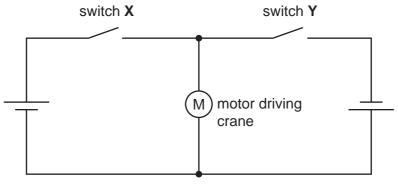


Fig. 2.2

When the student closes switch **X**, the motor runs and the crane is able to lift a load.

(i)	The student then opens switch X and closes switch Y .	
	Describe what happens to the motor.	
		[2]
(ii)	The student closes both switches. Describe what happens to the motor.	
		[1]

www.PapaCambridge.com

The smell of food cooking is detected by special cells in a person's nose. The salivary glands may respond to this stimulus by secreting saliva.

(a)	Nar	ne the receptor and the effector in this response.			
	rece	eptor			
	effe	ctor	[2]		
(b)	Wh	en food has been taken into a person's mouth, it is mixed with saliva.			
		va contains the enzyme amylase. Amylase digests large starch molecules iller sugar molecules.	to		
	(i)	What is an enzyme?			
			[2]		
	(ii)	Explain why digestion is necessary.			
			••••		
			[2]		

(c) Fig. 3.1 shows a section through a molar tooth.

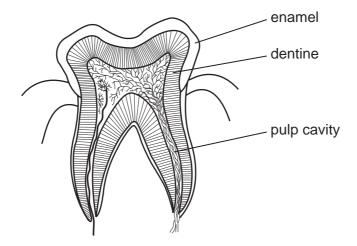


Fig. 3.1

(i)	Describe how the molar teeth help in the digestion of food.
	[2]
(ii)	Explain why a diet containing milk and other dairy foods can help to form strong teeth.
	[2]

(a) (i) Use words from the list to complete the sentences below.

							44	
				8			nuclei e process of	
(a)	(i)	Use words	from the list to	complete the s	sentences be	low.	Page	200
	cor	npounds	energy	fission	force	fusion	nuclei	THE
				41		. In a section of the Alberta		•
				_	-			
		nuclear			rocess,		of atoms	
		like uranium	n are split. Sma	all amounts of t	uranium can	release large ar	mounts of	
				·			[3	3]
	(ii)			on can be conv f nuclear energ		ectrical energy. nergy.	The first stag	je
		Describe ho	ow heat energy	/ is used to ger	nerate electri	cal energy in a p	oower station	
								•••
							[;	3]
(b)		rkers in nud terials.	clear power s	tations may b	e exposed	to radiation fro	m radioactiv	⁄e
	(i)	Explain why	y exposure to s	such radiation r	may be hazaı	dous to their he	ealth.	
								•••
							[2	2]
	(ii)			ographic film o 4.1 shows a wo		to check the ex	xposure of th	ie

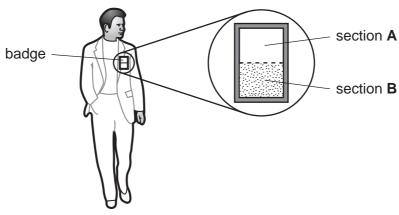


Fig. 4.1

A simple badge has two sections A and B for the detection of beta and radiation. Fig. 4.2 shows the side view through the badge.

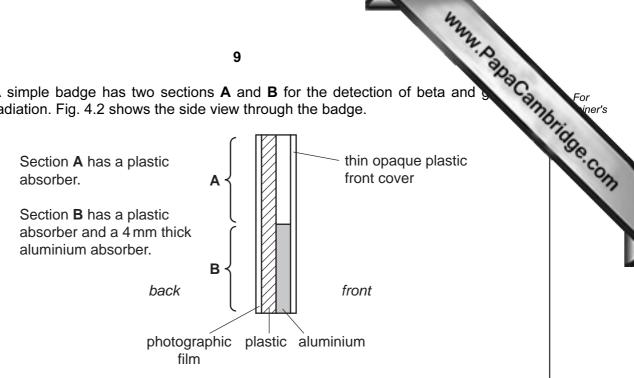


Fig. 4.2

When the photographic film from the badge is developed, it turns black where it has been exposed to radiation.

Complete Table 4.1 to show whether the photographic film will turn black when exposed to beta or gamma radiations.

Table 4.1

radiation	will section A turn black?	will section B turn black?
beta		
gamma	yes	

(iii)	Explain why the badge can not be used to detect alpha radiation.	
		[1
		г.

[2]

www.papaCambridge.com 5 Dung beetles live in places where large grass-eating animals, such as cattle, also live beetles collect dung produced by the cattle and make it into a ball, which they roll away bury.

The beetles feed on the dung.

Fig. 5.1 shows a dung beetle rolling a ball of dung.

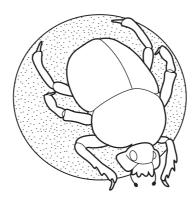


Fig. 5.1

(a) On the list below, draw lines to link each organism to its correct position in the food chain.

organism	position in food chain
dung beetle	producer
grass	consumer
cattle	decomposer

[2]

	The state of the s
	11 M. Par
(b)	Dung beetles are important in the carbon cycle.
	Dung beetles are important in the carbon cycle. Choose some of the words in the list to complete the sentences about the carbo cycle. carbon dioxide digestion nitrogen oxygen
	carbon dioxide digestion nitrogen oxygen
	photosynthesis respiration roots stomata water
	Dung beetles digest dung, producing sugars that are absorbed into their blood. The sugars are taken into the dung beetles' cells, where they are broken down during . This results in the release of into the air. Plants absorb this gas through their gas is then combined with water to make carbohydrates by [4]
(c)	If a farmer keeps too many cattle in one place, the soil may be damaged.
	Explain how keeping too many cattle can damage the soil.
	[2]

- 6 The Earth provides raw materials which are processed into useful products.
- www.PapaCambridge.com (a) Choose products from the list to complete the right hand column of Table 6.1. The fix one has been done as an example.

aluminium ceramics chlorine glass

Table 6.1

raw material	useful product
sand and metal oxides	glass
iron ore	
sodium chloride	

[2]

(b) Air is a **mixture** of elements and compounds.

Nitrogen dioxide, NO₂, is a **compound** of nitrogen and oxygen.

(i)	State two differences between a mixture of two elements and a compound of the same elements.
	1
	2
	[2]
(ii)	Air which has been cooled and pressurised turns to a liquid. The gases nitrogen and oxygen can be separated, by fractional distillation, from liquid air.
	Suggest why it is possible to separate these elements from liquid air by fractional distillation.
	[1]

		May	For iner's
		13	
(c)	Nitr	rogen and hydrogen can be made to react together to form ammonia, NH ₃ .	For singer's
	Thi	s reaction requires a catalyst and a high temperature.	TOTAL NOT S
	(i)	Describe the advantages of using a catalyst in a chemical reaction.	36.60
			[2]
	(ii)	State the effect of a high temperature on the rate of the reaction.	
			[1]
	(iii)	Ammonia is used to make the salts ammonium nitrate and ammonium phospha which are used as fertilisers.	ite,
		State the type of substance which reacts with ammonia to make salts, and nathe type of chemical reaction which occurs.	me
		type of substance	
		type of reaction	[2]

g measul For iner's

7 In an experiment, weights were hung on a spring and the length of the spring measur

Fig. 7.1 shows a graph of the results.

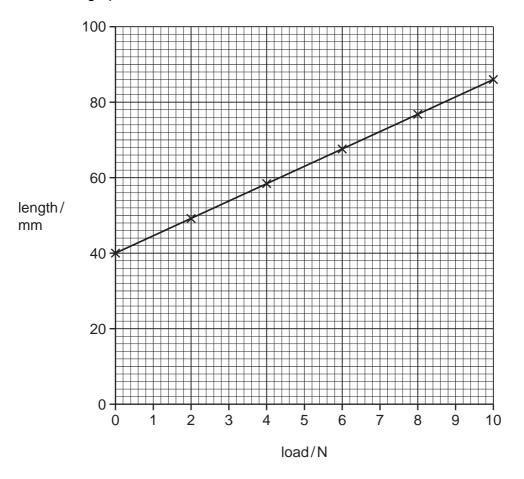


Fig. 7.1

								[1]
(a)	Describe the	relationship	between the	e load or	n the spring	and the le	ngth of the sp	oring.

(b) Fig. 7.2 shows a wooden bird suspended from the spring.

Fig. 7.2

The direction of the upward force of the spring has been labelled **A**.

Draw another arrow on the diagram to show the direction of the other force acting on the bird. Label your arrow ${\bf B}$. [1]

(c)	and	IS I	not	moving	j. VV	/hat	can	be	stated	about	the	sizes	and	directio	ns of	force	s A
																	[1]

HAMAN BARBECAN For iner's

www.PapaCambridge.com (d) The volume of the bird is 30 cm³ and the density of the wood is 0.8 g/cm³. Show that the mass of the bird is 24 g. State the formula that you use and show your working. formula used working [2] (e) The metal in the spring is an example of a solid. Fig. 7.3 shows the arrangement of particles in a solid, liquid and gas. Υ Z X Fig. 7.3 Which diagram X, Y or Z shows the arrangement of particles in the spring? Explain your answer. diagram explanation

8 Fig. 8.1 shows a sperm cell.

Fig. 8.1

(a)	(i)	State the name and number of the structures present in the nucleus of a hum sperm cell.	ıan
			[2]
	(ii)	On Fig. 8.1, use label lines to label and name two structures, other than nucleus, that are found in all animal cells.	the [2]
	(iii)	Describe two ways in which the shape of a sperm cell helps it to swim to an egg	ı .
		1	
		2	
			[2]
(b)	Na	me the organ in which sperm are produced.	[1]
(c)	Des	scribe what happens immediately after a sperm meets an egg in the oviduct.	
			[2]

			4m
			18 A. D.
The	e che	mical formulae for each of three	compounds found in rocks are shown below.
		CaMg(CO ₃) ₂	18 compounds found in rocks are shown below. dolomite potassium feldspar
		KA <i>ī</i> Si₃O ₈	potassium feldspar
		SiO ₂	quartz
(a)	(i)	State the total number of atoms	shown in the formula of potassium feldspar.
			[1]
	(ii)	When a flame test is carried ou is produced.	t on one of the compounds in the list, a lilac colour
		Suggest, with a reason, which o	one of the compounds is being tested.
		compound	
		reason	
			[2]
	(iii)	Two of the elements shown in Periodic Table.	the chemical formulae above are in Period 4 of the
		State the name of one of these	elements. [1]
(b)		en calcium carbonate, CaCO ₃ , ne, a chemical reaction occurs.	is heated strongly for some time using a Bunsen
	The	word equation for this reaction i	s
	С	alcium carbonate ——	calcium oxide + carbon dioxide
	(i)	State the type of chemical react	tion which occurs.
		Explain your answer.	
		type of reaction	
		explanation	

[2]

(ii)	Predict whether the mass of calcium oxide which is produced in this reaction • greater than,
	• or less than,
	• or the same as the mass of the calcium carbonate which is used.
	Circle your prediction.
	Explain your answer.
	[1]
(iii)	The student then added a little of the calcium oxide to some cold water that contains full range indicator solution (Universal Indicator).
	The student made two observations which are shown below.
	Explain these observations.
	observation 1 There was a large increase in the temperature of the mixture.
	explanation
	observation 2 The indicator changed colour from green to purple.
	explanation

For iner's

[2]

- **10** The speakers of three MP3 music players are being compared.
 - (a) The speakers are tested to find the range of frequencies they produce.

Table 10.1 shows the results.

Table 10.1

speaker	range of frequencies / Hz
Α	100 to 10000
В	20 to 25 000
С	20 to 40 000

	(i)	What is meant by the term frequency?	
			[1]
	(ii)	Use the information in Table 10.1 to suggest why the music played throuspeaker A might not sound as good as the other two speakers.	ıgh
			[1]
	(iii)	Music played through speakers B and C sounds the same.	
		Suggest a reason for this.	
			[1]
(b)	An	MP3 player is able to receive a radio station broadcasting on 102.7 MHz/0.28 m.	
	Wh	nat does 0.28 m refer to?	
			[1]

Anno Rainer's iner's

BLANK PAGE

BLANK PAGE

BLANK PAGE

The Periodic Table of the Elements DATA SHEET

Group	0	4 He Helium	20 Neon 10	40 Ar Argon	8 ¾	Krypton 36	131 Xe	54	Radon	98			175 Lu
	II/		19 Fluorine	35.5 C1 Chlorine	® &	Bromine 35	127 I	53 odine	At Astatine	85			173 Yb
	IN		00	32 S Sulfur	Se Se	Selenium 34	128 Te	52	Po				169 Tm
	>		14 N itrogen 7	31 Phosphorus	AS	Arsenic 33	122 Sb	51	209 Bi smuth	83			167 Er
	<u>\</u>		12 Carbon	28 Si licon	و 8 ع	Germanium 32	119 Sn		207 Pb				165 Ho
	III		11 Boron 5	_	20 Ga		115 In	49	204 T 1 Thallium	81			162 Dy
						Zinc 30	Cadming	48	201 Hg Mercury	80			159 Tb
							108 Ag		197 Au Gold				157 Gd
							106 Pd		195 Pt Platinum	78			152 Eu
					₅₉	Cobalt 27	Rhodium		192 Ir	77			150 Sm
		T Hydrogen			56 Fe	Iron 26	Ru Ruthenium	44	190 Os	92			Pm
					55 Mn	Manganese 25	Tc		186 Re Rhenium				144 Nd
					ن و	Chromium 24	96 Mo	42	184 W Tungsten	74			141 Pr
					51	Vanadium 23	93 N	41	181 Ta Tantalum	73			140 Ce
					⁴⁸	Titanium 22	91 Zr	40	178 H Hafnium	* 72			
					45 Sc	Scandium 21	89 >	39	139 La Lanthanum		227 Ac	Actinium 89	series
	Ш		9 Be Beryllium	24 Mg Magnesium	0 Q	Calcium 20	SS Sronting	38	137 Ba	56	226 Ra	Radium 88	anthanoid Actinoid s
	_		7 Li Lithium	23 Na Sodium	e X	Potassium 19	85 Rb		133 Csesium	55	<u>ن</u>	Francium 87	*58-71 Lanthanoid series 190-103 Actinoid series

www.papaCambridge.com Thullum Mo **E**rbium Fm Es Californium 98 2 ರ Terbium ਲ **Currium** gg **Eu** Europium Am Plutonium Pu ž Ра Cerium 232 **Th** 28 90 b = proton (atomic) number a = relative atomic mass X = atomic symbol 190-103 Actinoid series

Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.