

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions.

A copy of the Periodic Table is printed on page 20.

 At the end of the examination, fasten all your work securely together.

 The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
8		
9		
Total		

This document consists of 19 printed pages and 1 blank page.

www.papaCambridge.com 1 Dung beetles live in places where large herbivores, such as elephants, buffalo of also live. The beetles collect dung produced by the herbivores and make it into a ball, w they roll away and bury.

They lay eggs on the buried ball of dung, so that when their larvae hatch they can feed on the dung. The adults also feed on the dung.

Fig. 1.1 shows a dung beetle rolling a ball of dung.

Fig. 1.1

(a) Dung beetles play an important role in the carbon cycle.

Using the information above, suggest how dung beetles can help a carbon atom in animal dung to become part of a carbohydrate molecule within a plant.

[3] (b) The buried dung adds nitrates to the soil. Explain how this can help plants to grow better. [2]

		3 mers may use insecticides (pesticides that kill insects) on their land.
(c)	Far	mers may use insecticides (pesticides that kill insects) on their land.
	(i)	Explain why farmers use insecticides.
		[2]
	(ii)	Using the information above, explain why using insecticides on land where cattle graze could reduce the growth of grass.
		101
		[2]

www.papacambridge.com 2 The chemical formulae for some compounds (minerals) found in rocks are shown be

CaMg(CO ₃) ₂	dolomite
KA <i>l</i> Si ₃ O ₈	potassium feldspar
NaA <i>l</i> Si ₃ O ₈	sodium feldspar
CaCO ₃	calcite

(a) A white powder is known to be either potassium feldspar or sodium feldspar.

Describe a test and its results which would enable a chemist to find out which of these minerals is contained in the white powder.

..... [2]

(b) Calculate the relative formula mass of calcite.

Show your working.

- [1]
- (c) When dolomite is strongly heated, carbon dioxide gas is given off and a mixture of calcium and magnesium oxides remains.
 - (i) The symbolic equation for this reaction which is shown below is **not** balanced.

Balance the equation.

 $CaMg(CO_3)_2 \longrightarrow$ CaO + MgO CO_2 [1]

	4772	
	5	
(ii)	5 Name the type of chemical reaction in (i) and state the evidence you have the decide your answer.	Cam
	type of reaction	
	evidence	
		[2]
	student adds some water to some calcium oxide. She observes that an exothern action occurs and an alkaline solution is formed.	ıic
(i)	State the ion whose concentration increases when calcium oxide reacts with wate	ər.
		[1]
(ii)	The student then adds dilute hydrochloric acid to the solution from (i).	
	Write a word equation for the neutralisation reaction which occurs.	
		[2]

- www.papaCambridge.com In an experiment, weights were hung on a spring and the length of the spring measure Fig. 3.1 shows a graph of the results. length/ mm load/N Fig. 3.1 (a) Calculate the extension of the spring when a 4 N load is hung from it. Show your working. [1]
 - (b) Explain the relationship between the load on the spring and the length of the spring when the load is increased from 0 to 10 N.

[3]

Fig. 4.1

- (a) On Fig. 4.1, use label lines to label and name **two** structures that are found in **all** animal cells. [2]
- (b) Name the organ in which sperm are produced. [1]
- (c) An investigation was carried out into the oxygen use and energy use of sperm while they were at rest and while they were swimming.

For each measurement, the researchers calculated the amount of oxygen and the amount of energy used by 10^9 (one thousand million) sperm.

The results are shown in Table 4.1.

4

Table 4.1

	oxygen use/units per 10 ⁹ sperm per hour	energy use/joules per 10 ⁹ sperm per hour
resting sperm	24	46
swimming sperm	83	164

(i) Suggest why the researchers measured the oxygen use and energy use for 10^9 sperm, rather than for a single sperm.

[1]

(ii)	9 Explain why more oxygen is used when the sperm are using more energy.	For iner's
(iii)	[2] Calculate the total power output of a group of 10 ⁹ swimming sperm. State the formula that you use and show your working. formula	.com
(iv)	[3] In order to reach an egg, a human sperm has to swim from the top of the vagina to	
. ,	an oviduct, through a thin layer of liquid. Explain how the shape of the sperm, shown in Fig. 4.1, reduces the energy required to swim this distance. [2]	

 10 Nuclear reactors can be used in power stations to produce energy for generative. (i) Suggest one advantage and one disadvantage of generating electricity in this was advantage
 Nuclear reactors can be used in power stations to produce energy for genelectricity. (i) Suggest one advantage and one disadvantage of generating electricity in this waa advantage
(i) Suggest one advantage and one disadvantage of generating electricity in this wa
advantage
disadvantage
(ii) Describe what happens to an atom during nuclear fission.
(iii) Below is a newspaper article written by someone who has a poor understanding radioactivity.
There was a leak of radiation from our local nuclear power station yesterday.
The radiation blew across farmland.
It emits gamma particles which are harmful to wildlife.
Write down one mistake reported in the article. Explain why this is a mistake.
mistake
explanation

www.papaCambridge.com (b) A badge made from photographic film can be used to check the exposure workers to radiation. A simple badge has two sections A and B for the detection of and gamma radiation.

Fig. 5.1 shows a worker wearing his badge.

Fig. 5.2 shows the side view through the badge.

When the photographic film from the badge is developed, it turns black where it has been exposed to radiation.

(i) Complete Table 5.1 to show whether the photographic film will turn black when exposed to beta or gamma radiations.

Table 5.1

radiation	will section A turn black?	will section B turn black?
beta		
gamma	yes	

		422	
		12	
((ii)	12 Explain why the badge can not be used to detect alpha radiation.	For iner's
			1] Secon
		ha, beta and gamma radiations behave differently when they are passed through a ctric field.	n 🛛
	(i)	Explain why gamma radiation is not deflected.	
		[1]
((ii)	Explain why alpha and beta radiation are deflected in opposite directions.	
		[1]

- (a) Air is a mixture of elements and compounds. The two main elements in air are 6 and oxygen. Nitrogen dioxide, NO₂, is a compound of nitrogen and oxygen.
- www.papaCambridge.com (i) Complete Table 6.1 by writing **M** in the right hand column if the description refers to a mixture of nitrogen and oxygen or C if it refers to the compound, nitrogen dioxide.

Table 6.1

description	M or C
nitrogen atoms are bonded to oxygen atoms	
relative amounts of nitrogen and oxygen can vary	
little or no energy change when formed from nitrogen and oxygen	
chemical properties are very different from either nitrogen or oxygen	

- [2]
- (ii) The gases nitrogen and oxygen can be separated by fractional distillation from air which has been cooled and pressurised so that it turns into a liquid.

Explain briefly how fractional distillation separates nitrogen and oxygen from liquefied air.

[2]

(b) Nitrogen and hydrogen can be made to react together to form ammonia, NH₃. This reaction requires a solid iron catalyst and a high temperature.

Explain, in terms of molecular collisions, why increasing the temperature increases the rate of reaction.

[2]

www.papaCambridge.com (c) The diagrams in Fig. 6.1 show the outer electron shells of atoms of the electron hydrogen and sulfur.

Fig. 6.1

When these atoms bond together, they form a covalent compound whose formula is H_2S .

Use the information shown in these diagrams to explain why the formula of the compound is H_2S .

You may wish to draw a diagram to help your explanation.

..... [2]

8 A student carried out an experiment to find which substances in the environment nails made of mild steel to become rusty.

www.papaCambridge.com She selected three identical nails and placed them in sealed test-tubes, A, B and C, as shown in Fig. 8.1.

(a) Predict in which tube, A, B or C, the nail became rusty, and explain why the nail did **not** rust in either of the other two tubes.

[3]

- (b) Stainless steel does not rust because it is protected by a very thin layer which contains chromium oxide.
 - (i) Chromium oxide contains chromium ions, Cr^{3+} , and oxide ions, O^{2-} .

Deduce the chemical formula of chromium oxide.

Explain how you obtained your answer.

[2]

www.papaCambridge.com 17 (ii) Explain why an oxide ion carries a double negative (2-) electrical charge. (c) Steel is used to make the chain of a bicycle. To prevent rusting, the chain is covered by oil made of hydrocarbon molecules. The oil used to protect the bicycle chain contains mainly hydrocarbon molecules which do not contain any double bonds. steel chain (i) Describe a chemical test and its result that would show whether or not a hydrocarbon oil contained molecules with double bonds. [2] (ii) Suggest one property of a hydrocarbon oil which makes it suitable for use as a barrier to prevent rusting. [1]

- **9** The speakers of three MP3 music players are being compared.
 - (a) The speakers are tested to find the range of frequencies they produce.

Table 9.1 shows the results.

Table 9.1

speaker	range of frequencies/Hz
А	100 to 10000
В	20 to 25000
С	20 to 40000

(i) What is meant by the term frequency?

[1] (ii) Use the information in Table 9.1 to suggest why the music played through speaker A might not sound as good as the other two speakers. [1] (iii) Music played through speakers **B** and **C** sounds the same. Suggest a reason for this. [1] (b) Two speakers each with a resistance of 8Ω are connected in parallel. Calculate their combined resistance. State the formula that you use and show your working. formula used working

www.papaCambridge.com

[3]

.....

BLANK PAGE

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
4451551 <t< th=""></t<>
48 51 52 55 56 59 59 59 54 65 70 73 75 75 79 80 11 V Cr Min Fe Co Ni Cu Zn Ga Ga Ga See Berline 3 See Berline 3 11 V Cr Nu Min Fe Co Ni Case Ga Ga See See Berline 3 See Berline 3 See Min Min <t< td=""></t<>
IIVCronum vanadumName vanadumFeCoolNiCuZnGallarGallarSeeAsSeeBirratio222220333355333218386101103106108112115116122128127321808078010110310610811211533333218118118418610110310610811211511612212812773181184186190192195197201204207203512727313418418619019219519720420720338673747676777020420720338667374757670702042072038867374757677702042072038867374757670702042072038867374757670807020420720387737475 </td
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
178 181 184 186 190 192 195 197 201 204 207 208 At Hf Ta W Re OS Ir Pt Au Hg T1 Pb Bi Po At Infinition Tantalum Trugsten Revoin Osmiun Platinum 3 60d Mercury R1min 22 208 At Infinition Tantalum Trugsten 76 OS 17 78 00 001 01 001
HÍ Ta W Re OS Ir Pt Au HG T1 Pb Bi Po At tantum Tantaum Turgsten 7, Turgsten 7, Fahnun Osmiun Tidium Plainum 2, and 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
140 141 144 150 152 157 159 162 167 169 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er 169 Praseodymium Neodymium Smm Eu Gd Tb Dy Ho Er Tm Yb
140 141 144 150 152 157 159 162 165 167 169 173 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Pasaodynium Neodynium Samarium Samarium Gadolinum Terbium Dysposium Homium Europium Terbium Promentium Promenti Promentium Promenti Promentium Promenti Promentium Promenti Prom
140 141 144 150 152 157 159 162 167 169 173 Ce Pr Nd Pm Sm Eu Gd Tb Vp Ho Fr 173 Perseolymin Perseolymin Perseolymin Samining Europin Gd Tb Dy Ho Fr Tb Yb
berium Praseodymium Neodymium Samarium Europium Gadofinium Tettuum Dysposium Holmium Erbium Yiterbium
61 62 63 64 65 66 67 68 69
Pu Am Cm Bk Cf Es Fm
Putonium Americium Curium Berkelium Californium Einsteinium Fermium Me 94 95 96 97 98 98 100 101

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of