UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.papaCambridge.com MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

0653 COMBINED SCIENCE

0653/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Sc	heme: Teachers' ver	sion	Syllabus	×
	IGCSE -	October/November	2011	0653	30
(a) (i)	speeds up reactions provides lower (activ without being chemic (reject does not take	; ation) energy route ; cally altered/owtte ; e part in the reaction)			ambride [m
(ii) 1	transition (elements)	.,			[1]
(iii)	$Fe_3O_4 + 4H_2 \rightarrow$ (allow 1 mark for 4H	3 Fe + 4 H ₂ O ;; ₂ and 4 H ₂ O and then	1 mark for 3 F	e)	[2]
(iv)	reduced ; reduction is electron positive (iron) ions a	gain ; ·e discharged/gain ele	ectrons ;		[max 2]
(v)	56 × 3/16 × 4 ; = 232 ;				[2]
(b) sym	bols shown in correc	t atoms ;			
three lone	e bond pairs around pair correctly shown	central atom ; ;			[3]
				[Total: 12]
(a) (i)	[]	[]	[
1					

plants and tamarins correct ; all three predators correct ; all arrows in right direction ;

 (ii) energy lost, between trophic levels/as you go up the chain ; as heat/in respiration/other way in which energy is lost ; the idea that there is less energy for (top) predators ; [3]

[max 2]

age J	Mark Scheme: Teachers' version Syllabus	No.
	IGCSE – October/November 2011 0653	Sec.
(b) (i) fev	ver faeces further from tree ; thest distance from tree is 400 m :	Sint.
fig	ures quoted, e.g. 31% of faeces deposited within 50m of tree ;	[m]
(ii) fae	eces provide nutrients for, young plants/seedlings (not seeds);	
les	es competition (for seedlings) away from parent tree ;	
he	Ip to colonise new areas ;	[max 3]
		[Total: 10]
(a) (car B	– no mark) around / low height :	
low cer	ntre of mass ;	[2]
(h) (speed	=) distance / time : (allow accepted symbols but reject use of unit	5 25
symbo	s)	0 00
= 3307	1.5 = 220 km/n;	[2]
(c) (i) B	- constant speed ;	
C	 decelerating (negative) acceleration ; 	[2]
(ii) dis = ;	stance = area under graph/(6 × 40 × 0.5) + (4 × 40) ; 280 <u>m</u> ;	[2]
(iii) ac	celeration = change in speed \div time/ref. to gradient of A /40 \div 6 ;	
= (5.67 <u>m/s</u> ² ;	[2]
(iv) for	ce = mass × acceleration ;	10
= '	$1500 \times 6.67 = 10005 \text{ N};$	[2]
		[Total: 12]
(a) (i) Q		
R		[2]
(ii) an	row going upwards on ${\bf R}$ (towards spinal cord) and downwards on ${\bf S}$;	[1]
(iii) lat	pel to spinal cord ;	[1]
(iv) fas	ster/less time for damage to be done to hand ;	[1]
(b) (i) re	d blood cell ;	[1]
		F.4.1
(ii) 46		1

Page 4	Mark Scheme: Teachers' version	Syllabus Syllabus
	IGCSE – October/November 2011	0653
(a) (i) rate	e increases/or implied e.g. gas given off more quickl	ly; and
(ii) par refe	ticles/ions/molecules move faster/have increased l erence to increased collision frequency with magnes	K.E. ; ium ;
(b) (i) unr reje	eactive (with acid) / not brittle ; ct references to rusting	[1]
(ii) (sa con	urated hydrocarbons) heated/vaporised ; tacted with catalyst ;	[2]
		[Total: 6]
(a) (i) A ₁ :	= 8 (A), A ₄ = 2 (A) ;;	[2]
(ii) ene 72	rgy = power × time ; × 20 = 1440 J ;	[2]
(iii) 1÷ = 1	$R = 1 \div R_1 + 1 \div R_2; \div 6 + 1 \div 2;$	
(R :	=) 1.5 Ω ;	[3]
(b) (i) red	uce energy losses ;	[1]
(ii) (Np = 1	÷ Ns =) 25000 ÷ 600000 ; : 24 ;	[2]
		[Total: 10]

7 (a)

enzyme	one site of action	type of nutrient that is broken down	product that is formed
amylase	mouth	starch	maltose
protease / trypsin / pepsin	stomach / small intestine (see note below)	protein	amino acids

note: if protease given, allow either stomach or small intestine if trypsin, must be small intestine if pepsin, must be stomach one mark for any two correct ;;;

[3]

Page 5	Mark Scheme: Teachers' version Syllabus	6. Y
b) (i)	(rice has) more protein ;	a Camb
	needed for growth ;	10
(ii)	add Benedict's solution / Fehlings solution ; heat ;	
	brick red/orange colour indicates sugar present ;	[3]
(iii)	as sugar/sucrose ; in phloem ;	[2]
		[Total: 10]
(a) (i)	8(%)	[1]
()	(89) answer related logically to number of elements in Periodic Table :	[1]
(11)		[']
(b) (i)	so ions can move/if solid, ions could not move/so that it can be an electrolyte/so that it will conduct charge (not electrons);	[1]
(ii)	anode is positively charged ; attracts negative (oxide) ions/opposite charges attract/would be repelled from negative cathode ;	[2]
(iii)	Al^{3^+} (ions) gain electrons/ O^{2^-} (ions) lose electrons ; Al^{3^+} gains three electrons/ O^{2^-} loses two electrons ; some relevant logical statement linking to six electrons ; e.g. so if six electrons then number of Al atoms is $6 \div 3 = 2$ so six electrons must be provided by $6 \div 2 = 3$ oxide ions	[3]
		[Total: 8]
(a) (i)	(gamma able) to penetrate the food/packaging ;	[1]
(ii)	'the same number' <u>and</u> 'different numbers' (both required in this order) ;	[1]
(iii)	to protect workforce/stop radiation escaping ;	[1]
(b) (i)	use Geiger counter/other correct instrument to measure radiation emitted ;	[1]
(ii)	radiation emitted by unstable radioactive atoms/(radiated) food does not contain unstable radioactive atoms ;	[1]