## MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

## 0653 COMBINED SCIENCES

0653/51
Paper 5 (Practical Test), maximum raw mark 30

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

1 (a) (i) splint relights/splint glows brighter ;
oxygen/ $\mathrm{O}_{2}$;
(the second mark is tied to a correct observation being given)
(ii) 3 reasonably similar readings for fresh yeast $\mathbf{B}, \mathbf{C}$ and $\mathbf{D}$; clearly in seconds ;
(iii) correct value for $(\mathbf{B}+\mathbf{C}+\mathbf{D}) \div 3$ to a minimum of 1 decimal place unless it is exactly a whole number ;
(b) (i) 'no reaction' recorded for E in Table 1.1;
(ii) fresh yeast faster reaction/fresh yeast worked (or reverse statement) ; enzymes (or yeast) denatured (killed/destroyed/made inactive) by boiling ;
(c) (i) yes: similar readings; OR
no: different values/too few repeats/difficult to time end point (if this response is seen here it cannot be credited in (c) (ii) as well)/loss of yeast down side of tube ;
(ii) uneven concentration of yeast;
timing error ;
judgement of foam reaching the line;
not all yeast reaches the peroxide ;
detergent not controlled;
concentration of hydrogen peroxide ;
accuracy of measuring (must be accompanied by reference to scale) ;

2 (a)

| compound <br> changes | name and formula | time/s | colour |
| :---: | :---: | :---: | :---: |
| $\mathbf{A}$ | zinc carbonate, <br> $\mathrm{ZnCO}_{3}$ | e.g. 31 | yellow (when hot) |
| $\mathbf{B}$ | magnesium <br> carbonate, $\mathrm{MgCO}_{3}$ | e.g. 21 | (remains) white |
| $\mathbf{C}$ | unknown metal <br> carbonate, $\mathrm{XCO}_{3}$ | e.g. 28 | (green to) black |

(ii) A: a value of time (in seconds) AND yellow/yellow when hot (ignore references to the limewater) ;
(iii) B: a value of time AND white/no change/same (ignore references to the limewater) ;
C: a value of time AND black (ignore references to the limewater) ;
(iv) 1 (fastest) = one with shortest time
$2=$ one with intermediate time
3 (slowest) = one with longest time ;
(note: this must be consistent with candidates' results)
(v) carbon dioxide $/ \mathrm{CO}_{2}$;
(b) (i) blue ppt./grey-blue ppt./green-blue ppt.;
(ii) brown/black solid OR zinc turns brown/black; bubbles/effervescence/colourless solution/solution less blue/gets hot ;
(iii) $\mathrm{X}=$ copper $/ \mathrm{Cu}$; (note: do not allow copper(II) $/ \mathrm{Cu}^{2+}$ )
evidence 1 and evidence 2: any two for one mark
blue ppt. with NaOH (in (c)(ii)) and/or blue solution in (c) ; copper carbonate is green;
copper oxide is black ;
brown solid (in (c)(ii)) ;
displacement by zinc gives brown solid ;
$\mathbf{X}$ is brown ;
$\mathbf{X}$ does not react with acid ;

3 (a) any five readings (allow full reading from clock);
any complete column of readings (allow full reading from clock);
all 15 readings entered (allow full reading from clock) ;
average of readings increasing from $\theta=10^{\circ}$ to $30^{\circ}$;
all readings recorded to 0.1 s ;
(b) (i) all 3 averages correctly calculated to at least 1 decimal place ;
(ii) all 3 T values calculated correctly to at least 1 decimal place (average $\div 10$ );
(c) use of $\boldsymbol{l}=0.30 \mathrm{~m}$;
correct calculation of $\mathbf{g}$ to at least 1 decimal place using correct $\mathbf{T}$ from table which must be squared ;
(d) any errors are reduced (divided by ten)/reduced effect of timing error ;

