

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Ortige Com

*	
7	
٦	
_	
4	
W	
7	
Ν	
7	
0	
N	

CANDIDATE NAME						
CENTRE NUMBER			CANDII NUMBE			

COMBINED SCIENCE

0653/21

Paper 2 (Core)

October/November 2011

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

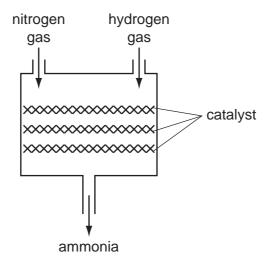
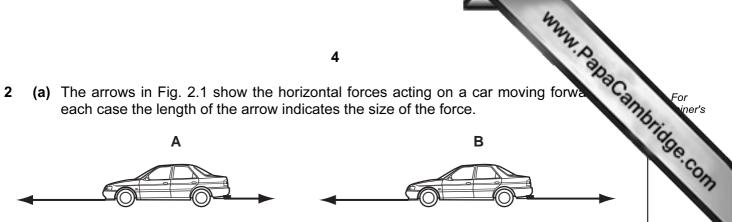
For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

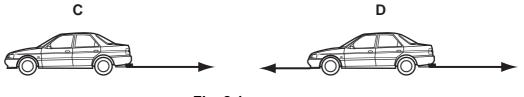
This document consists of 20 printed pages.

ron catal) For iner's

1 The chemical reaction involved in the manufacture of ammonia requires an iron catal

Fig.1.1 shows a simplified diagram of the reaction vessel in which ammonia is made.


Fig. 1.1

(a)	(i)	Explain the meaning of the term catalyst.	
			[2]
	(ii)	Iron is a member of the family of metals which lies between scandium and zinc the Periodic Table.	in
		Name this family of metals.	[1]
	(iii)	The iron catalyst is prepared by reacting iron oxide with hydrogen gas.	
		The balanced symbolic equation for this reaction is shown below.	
		$Fe_3O_4 + 4H_2 \longrightarrow 3Fe + 4H_2O$	
		State the total number of atoms shown on the left hand side of this equation.	
			[1]
	(iv)	State the number of hydrogen molecules shown in the equation in (iii).	
			[1]

(v)	Explain why the reaction in (iii) is an example of a redox reaction.
	[2]
(b) (i)	Complete the displayed (graphical) chemical formula of an ammonia molecule, NH_3 , which has been started below.
	H - N
	[2]
(ii)	A student states that an ammonia molecule contains covalent chemical bonds between its atoms.
	Explain whether or not the student is correct.
	[1]

(a) The arrows in Fig. 2.1 show the horizontal forces acting on a car moving forwal each case the length of the arrow indicates the size of the force. 2

		rig. 2.1	
	(i)	State which of the diagrams out of A , B , C and D show a car that is slowing down	n.
			[2]
	(ii)	Explain how you decided on your answer to (i).	
			[1]
((iii)	There are other forces acting on the cars that are not horizontal.	
		Name one of these forces.	[1]
(b)		e car has a radiator. This contains hot water that has been heated by passing ough the hot car engine.	j it
	The	purpose of the radiator is to cool down the water. The radiator is painted black.	
	(i)	State the method by which heat is transferred from the hot water to the radiator.	
			[1]
	(ii)	Explain why the radiator is painted black.	
			[1]

(c) Fig. 2.2 shows a racing car.

Fig. 2.2

The car took 1.5 hours to complete a race of 330 kilometres.

Calculate the average speed of the car in kilometres per hour.

State the formula that you use and show your working.

formula used

working

km/h [2]

(d) Fig. 2.3 shows the speed–time graph for the racing car over a short period of time.

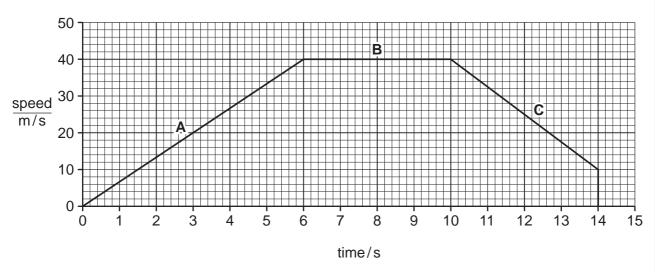


Fig. 2.3

Describe the motion of the racing car during

section B ,	

section C. [2]

Rice and cassava are important parts of a person's diet in some parts of the world. 3

www.PapaCambridge.com (a) Table 3.1 shows the main nutrients present in 100g of white rice and 100g of cassava

Table 3.1

nutrient	white rice	cassava
protein/g	5.0	1.2
carbohydrate/g	58.6	34.7
fat/g	0.4	0.3

(i)	Which of the nutrients listed in Table 3.1 can provide energy?
	[1]
(ii)	A diet that consists mostly of rice is better for a young child than a diet that consists mostly of cassava.
	Use the information in Table 3.1 to explain one reason why this is so.
	[2]
(iii)	Carbohydrates include sugars and starch.
	Describe how a student could test a sample of cooked rice to find out if it contains reducing sugar.
	[3]

Fig. 3.1

The cassava plant makes food in its leaves.

(i)	Describe how food is made by photosynthesis in a plant's leaves.
	[2]
(ii)	Suggest and explain one way, visible in Fig. 3.1, in which the structure of a cassava plant's leaves helps them to carry out photosynthesis.
	[2]

(a) Fig. 4.1 shows an incomplete diagram of the electromagnetic spectrum.

ig. 4.1 shows a	n incomplete diagra	m of the electroma	agnetic spectrum.	For iner
radio waves	infra-red	visible light	X–rays	Total

(i) Complete the diagram using terms from the list:

		gamma radiation	microwaves	ultraviolet	
					[2]
	(ii)	State one use for			
		infra-red radiation,			
		microwaves.			
					[2]
(b)	Gar	mma radiation and X-rays are two e	examples of ionising ra	adiation.	
	(i)	Explain the meaning of the term io	nising radiation.		
					[2]
	(ii)	Explain why ionising radiation can	be harmful to living th	iings.	
					[2]

-or	
iner's	

(c) Some types of food are treated with gamma radiation. The radiation kills the miles that make food decay

	my
	9
	me types of food are treated with gamma radiation. The radiation kills the miles in the make food decay
(i)	Explain why gamma radiation can be used for this, even when the fruit is packed in boxes.
	[1]

(ii) Fig. 4.2 shows how a conveyor belt can be used to move the boxes of fresh fruit past the radioactive source.

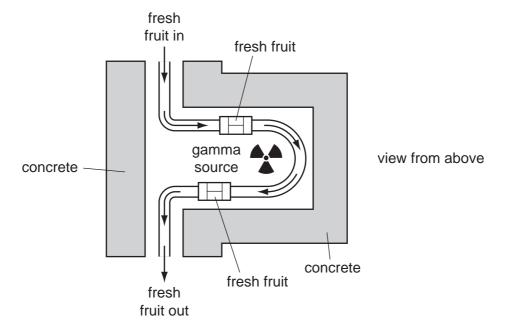


Fig. 4.2

Suggest why concrete is used to surround the radioactive source.	
	[1]

www.PapaCambridge.com Fig. 5.1 shows a piece of magnesium ribbon which a student has just dropped container of dilute sulfuric acid. 5

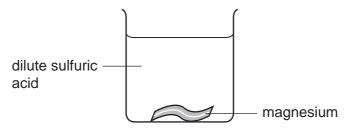


Fig. 5.1

9	
(a) (i) Describe two observations about this reaction which the	student could make.
1	
2	
	[2]
(ii) Complete the word chemical equation for the reaction in	(i).
sulfuric acid + magnesium	+
	[2]
(iii) State the name of the element which is present in b sulfuric acid.	oth hydrochloric acid and
	[1]

		the state of the s	
		11	
(b)		ntainers for dilute sulfuric acid are often made of poly(ethene). Poly(ethene) ymer which is formed from hydrocarbon monomers.	For iner's
	(i)	Suggest one property of poly(ethene) which makes it suitable for making sulfu acid containers.	ric Tage Co
			[1]
	(ii)	One method of dealing with waste poly(ethene) is to burn it.	
		Predict two compounds which will be produced when poly(ethene) is burnt.	
		1	
		2	[2]
	(iii)	Suggest one advantage of burning as a means of dealing with waste poly(ethene	∍).
			[4]

6 Fig. 6.1 shows part of the human nervous system.

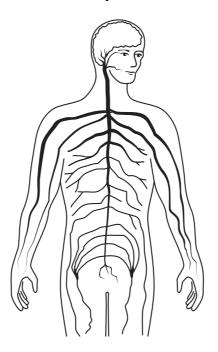


Fig. 6.1

- (a) On Fig. 6.1, use label lines to indicate and name the **two** parts of the central nervous system. [2]
- **(b)** If a person touches a hot pan with his finger, signals pass from his hand, through the central nervous system, to a muscle in his arm. The muscle contracts and moves the arm away.

State the correct biological term for each of the following descriptions.

(i)	the	cells	in	the	finger	that	detect	the	hot	pan	and	send	signals	to	the	central
	ner	ous s	sys	tem												

		[1]
(ii)	an organ such as a muscle that responds to the signals	
		[1]

Annonidae Com

(c)	A n	erve cell has a nucleus and a cell surface membrane.	Co
	(i)	Name one type of cell in the human body that does not contain a nucleus.	
			[1]
	(ii)	The nucleus contains DNA. State the function of DNA.	
			[1]
	(iii)	Outline one function of the cell surface membrane.	
			[1]

For iner's 7 Fig. 7.1 shows some data about the percentage by mass of elements in the Earth's c.

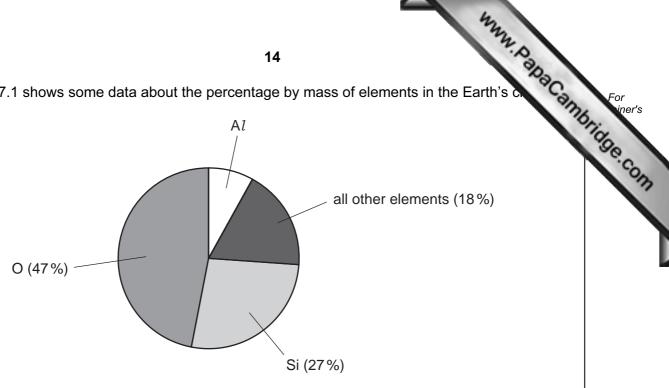


Fig. 7.1

(a) State the percentage by mass of aluminium in the Earth's c	(a)
--	-----

T1
 L

(b) Fig. 7.2 shows a diagram of an ion of element **E**.

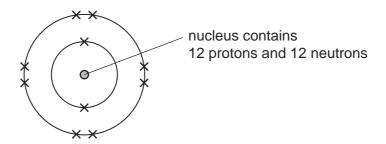
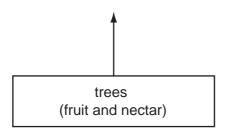


Fig. 7.2

(i) Name element E and explain how the diagram shows that the ion has a positive electrical charge.

name of element E	
	[3]

]


	(ii)	Name the noble gas whose atoms have the same number of electrons as shown in Fig. 7.2
	(iii)	Explain, in terms of electron configuration, why the atoms of all the noble gases are unreactive.
		[1]
(c)		7.3 shows a simplified diagram of a process which could be used to produce the ctive metal, sodium.
		electric power supply molten sodium chloride
		Fig. 7.3
	(i)	Name the process shown in Fig. 7.3.
	(ii)	Name the element which forms at the anode. [1]
		[1]

8 The golden lion tamarin is a species of monkey that lives in forests in Brazil. includes fruits and nectar from trees. Its predators include snakes, bamboo rats and own

(a) (i) In the space below, complete the food web, using the information above.

[3]

(ii) On your food web, draw a circle around the producer.

[1]

e of the the Cannahara For iner's

(b) The nectar that the monkeys eat is made by flowers that grow on some of the the forests. The fruits that the monkeys eat develop from the flowers.

Fig. 8.1 shows a section through a flower.

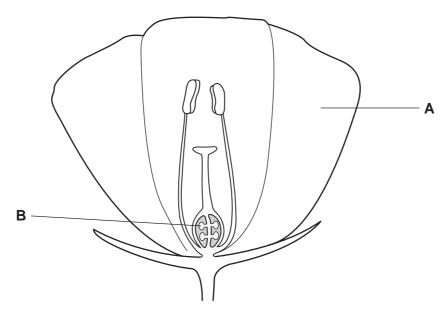


Fig. 8.1

(i) Name the parts labelled **A** and **B**.

Α	
В	[2]

- (ii) On Fig. 8.1, label the part that produces pollen, using a label line and the letter P. [1]
- (iii) On Fig. 8.1, label the part that will develop into a fruit, using a label line and the letter **F**. [1]

(iv)	Explain why the flower produces nectar.

www.PapaCambridge.com (a) Fig. 9.1 shows the circuit diagram of a circuit which a student set up. He measure 9 current passing through the 2Ω resistor. The ammeter reading was 6 A.

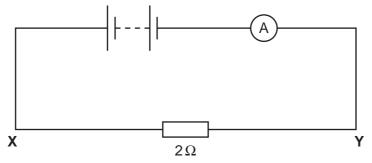


Fig. 9.1

(i) Show that the voltage across the resistor was 12 V.

State the formula that you use and show your working.

formula used

working

[2]

(ii) A 4Ω resistor is placed in series with the 2Ω resistor between **X** and **Y**.

Calculate the total resistance between X and Y.

State the formula that you use and show your working.

formula used

working

[2]

(b)	Many countries are seeking alternatives to fossil fuels as energy sources for general electricity.	5
	Explain why is it necessary to find alternative energy sources for generating electricity.	
	[2]	

For iner's

The Periodic Table of the Elements DATA SHEET

	0	4 He lium	20 N eon	40 Ar Argon	84 Kr ypton	131 Xe Xenon	Radon		175 Lu Lutetium
			10	18	36	54	98		
	II/		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine	127 I lodine	At Astatine 85		Yb Ytterbium
	IN		16 Oxygen	32 S Sulfur	Selenium	Tellurium 52	Po Polonium 84		169 Tm
	Λ		14 N Nitrogen 7	31 Phosphorus	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth		167 Er Erbium
	//		12 Carbon	28 Si iicon	73 Ge Germanium	119 Sn Tin	207 Pb Lead 82		165 Ho Holmium
	III		11 Boron 5	27 A1 Aluminium	70 Ga Gallium 31	115 In Indium 49	204 T 1 Thallium		162 Dy Dysprosium
					65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		Terbium
									157 Gd Gadolinium
dn					59 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium
Group					59 Co obalt	Rh Rhodium	192 I r Irdium		Samarium
		T Hydrogen			56 Fe Iron	Ruthenium	190 OS Osmium 76		Pm Promethium
			1		Mn Manganese	Tc Technetium 43	186 Re Rhenium 75		Neodymium
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Praseodymium
					51 Vanadium 23	Niobium 41	181 Ta Tantalum 73		140 Ce
					48 T	91 Zr Zirconium 40	178 Hf Hafnium * 72		
					45 Scandium	89 ×	139 La Lanthanum 57 *	Actinium t	series gries
	=		9 Be Beryllium	24 Mg Magnesium	40 Caa Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series
	_		7 Li Lithium	23 Na Sodium	39 Fotassium	85 Rb Rubidium 37	133 Csesium 55	Francium 87	58-71 La 90-103 A
			1	I	I	1	I		ı * -

www.papaCambridge.com F Hallium Mo Erbium Fm **H**olmium Es The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). Californium 98 2 ರ Terbium ਲ **Currium** o Am П Plutonium E Pu å o Z Ра Ļ Cerium 232 **Th** 28 90 b = proton (atomic) number

a = relative atomic mass X = atomic symbol

Key

2

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.