

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Oditie Com

*	
N	
0	
7	
4	
ū	
∞	
9	
∞ 	
<u>_</u>	
*	

CENTRE NUMBER CANDIDATE NUMBER						

COMBINED SCIENCE

0653/22

Paper 2 (Core)

October/November 2011

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use					
1					
2					
3					
4					
5					
6					
7					
8					
9					
Total					

This document consists of 21 printed pages and 3 blank pages.

- For iner's
- 1 Coral reefs are found in shallow seawater. Limestone is a common type of rock found Earth's crust. Both coral reefs and limestone are made mainly of the ionic componation carbonate.
 - (a) A student used the apparatus shown in Fig. 1.1 to test a rock sample to discover whether or not it is limestone.

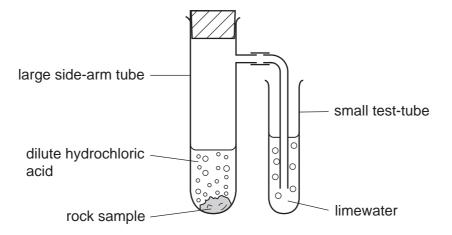


Fig. 1.1

The student observed that a gas was given off and that the limewater in the small test-tube became cloudy.

(i)	Name the gas that was given off.	[1]
(ii)	State the chemical formula of hydrochloric acid.	
		[1]
(iii)	After some time, the student observed that the gas stopped forming, but a sm piece of the rock sample remained in the large side-arm tube.	ıall
	Explain why gas stopped forming.	
		••••
		[2]
(iv)	The student carried out a flame test on the solution that remained in the large side arm tube. This test produced an orange-red colour.	le-
	Name the element that this observation suggests is contained in the rock sample).
		[1]

(b)	In recent years, the amount of carbon dioxide dissolving in seawater has increas								
	During this period, many coral reefs have become weakened and damaged.								
	(i) State and explain briefly how an increase in carbon dioxide concentration affect the pH of seawater.								
			[2]						
	(ii)	Suggest a reason why an increase in carbon dioxide concentration might responsible for damage to coral reefs.	be						

For iner's

(a) Fig. 2.1 shows the horizontal forces acting on an aircraft moving along the runwa. These forces are balanced. 2

Fig. 2.1

		1 ig. 2.1	
	(i)	The arrow to the right represents the driving force produced by the engines.	
		On the diagram, name the other force.	[1]
	(ii)	Explain what is meant by the phrase forces are balanced.	
			[1]
	(iii)	Describe the movement of the aircraft when these forces are balanced.	
			[1]
(b)	In t	he air, the aircraft travels at 80 m/s for one hour.	
	Cal	culate the distance travelled.	
	Sta	te the formula that you use and show your working.	
		formula used	
		working	
		m	[2]

		May
		5
(c)		ople who fly frequently have greater exposure to ionising radiation than thought not fly. Explain why exposure to ionising radiation may be harmful.
	(i)	Explain why exposure to ionising radiation may be harmful.
		[2]
	(ii)	This ionising radiation is cosmic radiation from outer space. This is one source of background radiation.
		State one other natural source of background radiation.
		[1]
(d)		e aircraft is able to navigate using radar. This involves using microwaves. These are t of the electromagnetic spectrum.
		me one other wave which is part of the electromagnetic spectrum and give a use for radiation.
	nar	me
	use	[2]

3 (a) Complete the word equation for aerobic respiration.

volume of

oxygen per minute/dm³

oxygen + ____ + ______ | 2

(b) Describe how oxygen is transported from the lungs to a cell in a human muscle.

_______[2

(c) An athlete ran on a treadmill at a slow speed for 5 minutes. She then ran on the same treadmill at a faster speed for 5 minutes.

Fig. 3.1 shows the volume of oxygen she used per minute during both runs.

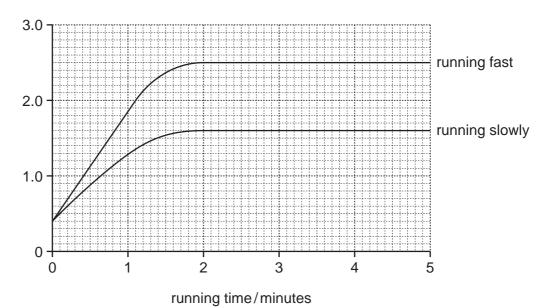
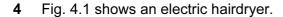


Fig. 3.1

(i) State the volume of oxygen used per minute by the athlete before she began to run.


____dm³ [1]

(ii) Describe how the volume of oxygen used per minute during the fast run differs from the slow run.

[2

	(iii)	Suggest an explanation for the differences you have described in (ii).	10
			•
			2]
(d)		fessional athletes do not smoke cigarettes because smoking can caus ohysema. This reduces the ability of oxygen to diffuse into the blood from the lungs	
	Exp	plain what is meant by <i>emphysema</i> .	
			 11

For iner's

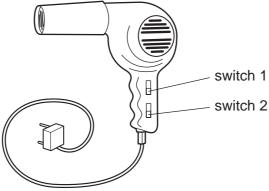


Fig. 4.1

(a) Fig. 4.2 shows the circuit diagram for the hairdryer.

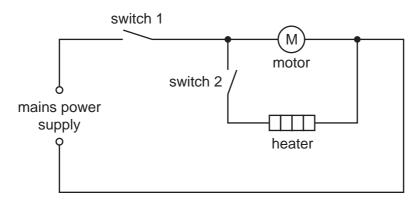


Fig. 4.2

(i) State which of the switches must be closed (on) for the heater in the hairdryer to work.

[1]

(ii) A student wanted to determine the resistance of the heater.

www.PapaCambridge.com Fig. 4.3 shows the circuit he built to measure the current passing through the heater and the potential difference across the heater.

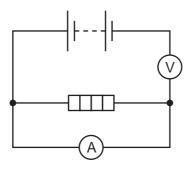


Fig. 4.3

His experiment did not work because his circuit was incorrect.

Draw the correct circuit in the space below.

			[2]
b)	The	e electricity used in the hairdryer was generated at a power station.	
	(i)	Name a fossil fuel that can be used in power stations.	
			[1]
	(ii)	Power is transmitted from the power station over large distances.	
		A high voltage is always used. Explain why.	
			[4]

The high voltage is produced by a transformer.

Fig. 4.4 shows a simple transformer.

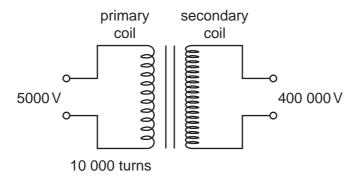


Fig. 4.4

(iii) Use the equation

$$V_p/V_s = N_p/N_s$$

to calculate the number of turns in the secondary coil.

Show your working.

	number of turns =	[1]
(iv)	Transformers are also used between power lines and people's houses.	
	Explain why.	
		[2]

HAMAN BORNES CONTINUES CON

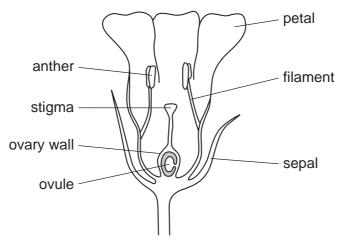


Fig. 5.1

(a)	(i)	State the	function	of each	of the	following	parts	of the	flower
-----	-----	-----------	----------	---------	--------	-----------	-------	--------	--------

petal						
anther	[2]					
Name the part of the flower that						
develops into a seed,						
develops into a fruit.	[2]					

(b) Flowers are involved in sexual reproduction.

(ii)

Complete the table to show whether each statement is true for asexual reproduction, sexual reproduction, both or neither.

Use a tick (\checkmark) for a correct statement and a cross (x) for an incorrect statement. You must write either a tick or cross in each space in the table.

The first statement has been completed for you.

statement	asexual reproduction	sexual reproduction
gametes are involved	×	✓
new individuals are produced		
a zygote is produced		
offspring are always genetically identical		

Table 6.1 shows information about the metals contained in Nordic gold.

Table 6.1

metal	% by mass in Nordic gold	compound from which the metal is extracted
aluminium	5	Al ₂ O ₃
copper		CuFeS ₂
tin	1	SnO ₂
zinc	5	ZnS

(a) (i)	Complete Table 6.1 by stating the percentage of copper in Nordic gold. [1]
(ii)	Suggest how Nordic gold could be made.
	[1]
(iii)	In the right hand column, the elements present in compounds can be identified by their symbols.
	Name a metallic element present in one of the compounds in Table 6.1 which is not present in Nordic gold.
	[1]
(iv)	Suggest two properties of Nordic gold, other than its appearance, that make it a suitable material from which to make coins.
	1
	2[2]
(b) (i)	Tin may be extracted from tin oxide by heating a mixture of tin oxide and carbon. The other product of this reaction is carbon monoxide.
	Write a word chemical equation for this reaction.
	[1]

Anno For iner's

		The state of the s
		State and explain which substance is oxidised when tin is extracted from tings substance which is oxidised explanation
	(ii)	State and explain which substance is oxidised when tin is extracted from tin
		substance which is oxidised
		explanation
		[2]
(c)	(i)	Aluminium is extracted from the ionic compound aluminium oxide by electrolysis.
		Explain the meanings of the following terms that are important in electrolysis.
		cathode
		electrolyte
		[3]
	(ii)	State how the position of aluminium in the Periodic Table shows that aluminium atoms have three electrons in their outer shell.
		[1]

BLANK PAGE

www.PapaCambridge.com (a) Fig. 7.1 shows a mother pushing her child in a baby buggy. She uses a force of 7

Fig. 7.1

The baby buggy is pushed 2000 m.

Calculate how much work has been done.

State the formula that you use and show your working.

formula used

working

J [2

(b) A child is playing on a swing. This is shown in Fig. 7.2.

At the top of the oscillation, the child and swing are momentarily at rest.

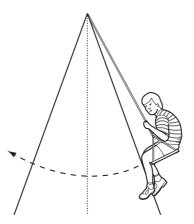


Fig. 7.2

(i) Write the correct energy type in the space to complete the box.

		_		_				
po	gravitational tential energy at the top of ne oscillation	=	gravitational potential energy at the bottom of the oscillation	+	energy at the bottom of the oscillation	+	energy losse	:S
								[1]
	(ii) Suggest a	form	of energy which is	lost fr	om the system.			
								[1]
((iii) Suggest w	here	the lost energy goe	s.				
								[1]
(c)	The child weig	hs 40	0 N.					
	The Earth's gra	avitat	ional field strength i	s 10 N	N/kg.			

(i) State the mass of the child.

ka	[2]
 9	L-

(ii)	The average density of the human body is 1020 kg/m ³ .
	Calculate the volume of the child.
	State the formula that you use and show your working.
	formula used
	working

m ³ [1]
------------------	----

Fig. 8.1

(a)		e frogs feed on insects lecules in the insects into		their alimentary	canal break down	large
	(i)	State the correct biologic	ical term for this	process.		[1]
	(ii)	Explain why this proces	s is necessary f	or the frog's surviv	<i>r</i> al.	
						[1]
	(iii)	Use words from the list	to complete the	sentences about	enzymes.	
		carbohydrates	cells	denatured	dissolved	
		hydrogen	killed	oxygen	proteins	
		Enzymes arein living organisms. One				
		hydrogen peroxide to w	ater and		Enzymes	5
		are	t	y high temperatui	res.	[3]
(b)	Tro	pical rain forests have a	high species div	ersity.		
	(i)	Explain what is meant b	y species divers	sity.		
						[1]

Annow Ballacan For iner's

(ii)	Many species of tree frog have become extinct in the last ten years.	20
	Suggest how the loss of tree frogs from the rain forest could damage the ecosystem.	1
	[2	·

For iner's

	arbons are compounds which contain only the elements hydrogen and carbon e simplest hydrocarbon is methane, which is an important fuel. State one natural source of methane.
	20
Hydroca	arbons are compounds which contain only the elements hydrogen and carbon
(a) The	e simplest hydrocarbon is methane, which is an important fuel.
(i)	State one natural source of methane.
	[1]
(ii)	Complete the displayed (graphical) formula of a methane molecule.
	Н
	[2]
(iii)	Carbon dioxide and carbon monoxide are compounds released into the atmosphere when methane burns.
	Describe one environmental disadvantage of each compound.
	carbon dioxide
	carbon manavida
	Carbon monoxide
	101
	[3]

Table 9.1

molecular formula	boiling point/°C		
C ₆ H ₁₄	69		
C ₁₀ H ₂₂	174		
C ₁₂ H ₂₆	216		
C ₅ H ₁₂	36		

(i)	Name a process which could be used to separate a mixture of the compounds in Table 9.1.
	[1]
(ii)	Use the information in Table 9.1 to describe how the boiling point of a hydrocarbon is affected by the mass of its molecules.
	[2]

BLANK PAGE

BLANK PAGE

The Periodic Table of the Elements DATA SHEET

								1	
Group	0	4 He Helium	19	40 Ar Argon	84 Krypton 36	131 Xe Xenon	Radon 86		175 Lu Lutetium
	IIA		19 T Fluorine	35.5 C1 Chlorine	80 Br Bromine	127 I lodine 53	At statine		173 Yb
	IN		16 Oxygen	32 Sulfur	79 Se Selenium	128 Te Tellurium 52			169 Tm Thulium
	^		14 Nitrogen 7	31 P Phosphorus 15	75 AS Arsenic	122 Sb Antimony 51			167 Er Erbium
	N		12 Carbon	28 Si Silicon	73 Ge Germanium	30 Tin 10			165 Ho lmium
	III		11 Boron 5	27 A1 Aluminium	70 Ga Gallium 31	115 In Indium	204 T 1 Thallium		162 Dy Dysprosium
						112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium
						Ag Silver	197 Au Gold		157 Gd Gadolinium
					59 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium
					59 Co Cobalt	103 Rh Rhodium 45	192 I r Iridium 77		150 Sm Samarium
		1 H Hydrogen			56 Iron	Ruthenium	190 Os Osmium 76		Pm Promethium
					Mn Manganese	Tc Technetium 43	186 Re Rhenium 75		144 Nd Neodymium
					Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium
					51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73		140 Ce Cerium
					48 T ttanium 22	91 Zr Zirconium 40	178 # Hafnium		
					Scandium	89 ~ Yttrium 39	139 La Lanthanum *	227 AC Actinium 89	series eries
	=		Be Beryllium	24 Mg Magnesium	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series
	_		7 Li Lithium	23 Na Sodium	39 K Potassium 19	Rb Rubidium 37	133 Cs Caesium 55	Francium 87	*58-71 L;

www.papaCambridge.com Thulium Mo 69 Erbium Fn 89 Es The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). Californium 98 ರ Terbium ਲ **Currium** Am Samarium 62 Plutonium Pu å Neodymium 60 Praseodymium 6 Ра 232 **1** Thorium Cerium 28 90 b = proton (atomic) number a = relative atomic mass

X = atomic symbol

Key

7

2

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.