

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use					
1					
2					
3					
4					
5					
6					
7					
8					
9					
Total					

1 hour 15 minutes

This document consists of 21 printed pages and 3 blank pages.

- www.PapaCambridge.com 1 Coral reefs are found in shallow seawater. Limestone is a common type of rock found Earth's crust. Both coral reefs and limestone are made mainly of the ionic compo calcium carbonate.
 - (a) A student used the apparatus shown in Fig. 1.1 to test a rock sample to discover whether or not it is limestone.

The student observed that a gas was given off and that the limewater in the small test-tube became cloudy.

(i) Name the gas that was given off. [1] (ii) State the chemical formula of hydrochloric acid. [1] (iii) After some time, the student observed that the gas stopped forming, but a small piece of the rock sample remained in the large side-arm tube. Explain why gas stopped forming. [2] (iv) The student carried out a flame test on the solution that remained in the large sidearm tube. This test produced an orange-red colour. Name the element that this observation suggests is contained in the rock sample. [1]

		13332 ·
		5
(c)	Pec do i	ople who fly frequently have greater exposure to ionising radiation than the reaction of fly.
	(i)	Explain why exposure to ionising radiation may be harmful.
		[2]
	(ii)	This ionising radiation is cosmic radiation from outer space. This is one source of background radiation.
		State one other natural source of background radiation.
		[1]
(d)	The par	e aircraft is able to navigate using radar. This involves using microwaves. These are tof the electromagnetic spectrum.
	Nar this	ne one other wave which is part of the electromagnetic spectrum and give a use for radiation.
	nan	ne
	use	[2]

 7

 (iii) Suggest an explanation for the differences you have described in (ii).

 [2]

 (d) Professional athletes do not smoke cigarettes because smoking can cause emphysema. This reduces the ability of oxygen to diffuse into the blood from the lungs. Explain what is meant by emphysema.

[1]

(a) Fig. 4.2 shows the circuit diagram for the hairdryer.

4

(i) State which of the switches must be closed (on) for the heater in the hairdryer to work.

[1]

www.papacambridge.com

(ii) A student wanted to determine the resistance of the heater.

www.papaCambridge.com Fig. 4.3 shows the circuit he built to measure the current passing through T heater and the potential difference across the heater.

Fig. 4.3

His experiment did not work because his circuit was incorrect.

Draw the correct circuit in the space below.

[2]

(b) The electricity used in the hairdryer was generated at a power station. (i) Name a fossil fuel that can be used in power stations. [1] (ii) Power is transmitted from the power station over large distances. A high voltage is always used. Explain why. [1]

www.papacambridge.com 10 The high voltage is produced by a transformer. Fig. 4.4 shows a simple transformer. primary secondary coil coil 0000000 O 5000 V 400 000 V C 10 000 turns Fig. 4.4 (iii) Use the equation $V_p/V_s = N_p/N_s$ to calculate the number of turns in the secondary coil. Show your working. number of turns = [1] (iv) Transformers are also used between power lines and people's houses. Explain why. [2]

[3]

www.papacambridge.com

11

5 Fig. 5.1 shows a section through a flower.

Fig. 5.1

(a) (i) State the function of each of the following parts of the flower.

	petal		
	anther		[2]
(ii)	Name the part of the flow	wer that	
	develops into a seed,		
	develops into a fruit.		[2]

(b) Flowers are involved in sexual reproduction.

Complete the table to show whether each statement is true for asexual reproduction, sexual reproduction, both or neither.

Use a tick (\checkmark) for a correct statement and a cross (\varkappa) for an incorrect statement. You must write either a tick or cross in each space in the table.

The first statement has been completed for you.

statement	asexual reproduction	sexual reproduction
gametes are involved	×	\checkmark
new individuals are produced		
a zygote is produced		
offspring are always genetically identical		

12

www.papaCambridge.com

6 Nordic gold is an alloy of four metals used to make coins.

Table 6.1 shows information about the metals contained in Nordic gold.

Table 6.1

metal	% by mass in Nordic gold	compound from which the metal is extracted
aluminium	5	Al ₂ O ₃
copper		CuFeS ₂
tin	1	SnO ₂
zinc	5	ZnS

(a) (i)	Complete Table 6.1 by stating the percentage of copper in Nordic gold. [1]
(ii)	Suggest how Nordic gold could be made.
	[1]
(iii)	In the right hand column, the elements present in compounds can be identified by their symbols.
	Name a metallic element present in one of the compounds in Table 6.1 which is not present in Nordic gold.
	[1]
(iv)	Suggest two properties of Nordic gold, other than its appearance, that make it a suitable material from which to make coins.
	1
	2 [2]
(b) (i)	Tin may be extracted from tin oxide by heating a mixture of tin oxide and carbon. The other product of this reaction is carbon monoxide.
	Write a word chemical equation for this reaction.
	[1]

	the second second
	13
(ii)	State and explain which substance is oxidised when tin is extracted from tin
	substance which is oxidised
	explanation
	[2]
(c) (i)	Aluminium is extracted from the ionic compound aluminium oxide by electrolysis.
	Explain the meanings of the following terms that are important in electrolysis.
	cathode
	electrolyte
	[3]
(ii)	State how the position of aluminium in the Periodic Table shows that aluminium atoms have three electrons in their outer shell.
	[1]

BLANK PAGE

www.papaCambridge.com (a) Fig. 7.1 shows a mother pushing her child in a baby buggy. She uses a force of 7

Fig. 7.1

The baby buggy is pushed 2000 m.

Calculate how much work has been done.

State the formula that you use and show your working.

formula used

working

[2] J

www.papaCambridge.com 16 (b) A child is playing on a swing. This is shown in Fig. 7.2. At the top of the oscillation, the child and swing are momentarily at rest. Fig. 7.2 (i) Write the correct energy type in the space to complete the box. gravitational gravitational potential energy potential energy energy at the = + + energy losses at the top of at the bottom of bottom of the the oscillation the oscillation oscillation [1] (ii) Suggest a form of energy which is lost from the system. [1] (iii) Suggest where the lost energy goes. [1] (c) The child weighs 400 N. The Earth's gravitational field strength is 10 N/kg. (i) State the mass of the child.

_____kg [2]

_____m³ [1]

18 Fig. 8.1 shows a tree frog that lives in a tropical rain forest. www.papacambridge.com

Fig. 8.1

- (a) Tree frogs feed on insects. Enzymes in their alimentary canal break down large molecules in the insects into small ones.
 - (i) State the correct biological term for this process. [1]
 - (ii) Explain why this process is necessary for the frog's survival.

8

[1]

(iii) Use words from the list to complete the sentences about enzymes.

carbohydrates	cells	denatured	dissolved
hydrogen	killed	oxygen	proteins

Enzymes are	that catalyse chemical reaction	าร
in living organisms. One example	e of an enzyme is catalase, which breaks down	ı
hydrogen peroxide to water and	. Enzymes	
are	by high temperatures.	[3]

- (b) Tropical rain forests have a high species diversity.
 - (i) Explain what is meant by species diversity.

[1]

(ii) Many species of tree frog have become extinct in the last ten years.

Suggest how the loss of tree frogs from the rain forest could damage the ecosystem.

www.papacambridge.com [2]

		444	
		20	
9	Hydroca	arbons are compounds which contain only the elements hydrogen and carbon	For
	(a) The	e simplest hydrocarbon is methane, which is an important fuel.	Tig ners
	(i)	State one natural source of methane.	Se.co.
		[1]	177
	(ii)	Complete the displayed (graphical) formula of a methane molecule.	
		H	
		Ċ	
		[2]	
	()	[2]	
	(111)	atmosphere when methane burns.	
		Describe one environmental disadvantage of each compound.	
		carbon dioxide	
		carbon monoxide	
		[3]	

www.papacambridge.com (b) Table 9.1 shows the molecular formulae and boiling points of four hydrocarbons.

molecular formula	boiling point/°C
C_6H_{14}	69
$C_{10}H_{22}$	174
$C_{12}H_{26}$	216
C ₅ H ₁₂	36

Table 9.1

(i) Name a process which could be used to separate a mixture of the compounds in Table 9.1.

[1]

(ii) Use the information in Table 9.1 to describe how the boiling point of a hydrocarbon is affected by the mass of its molecules.

.....

BLANK PAGE

BLANK PAGE

									2	4							Mr.	Papa
	0	4 Helium 2	00	Na	Neon 10	40 Ar	Argon 18	84 Kr	Krypton 36	131 Xe	Xenon 54	Rn Radon 86			175 Lu Lutetium 71	-	Lawrencium 103	Cambrid
	, >		19	2 L	Fluorine 9	35.5 C1	Chlorine 17	88 88 80	Bromine 35	127 I	lodine 53	At Astatine 85			173 Yb Ytterbium 70	Q	Nobelium 102	390
	>		16	2 C	Oxygen 8	S 33	Sulfur 16	79 Se	Selenium 34	128 Te	Tellurium 52	Po Polonium 84			169 Tm ^{Thulium}	W	Mendelevium 101	
	>		14	2	Nitrogen 7	ک ۳	Phosphorus 15	75 AS	Arsenic 33	122 Sb	Antimony 51	209 Bi Bismuth			167 Er 68	а Ц	Fermium 100	
	≥		10	؛ ر	Carbon 6	82 SI	Silicon 14	73 Ge	Germanium 32	119 Sn	50 Tin	207 Pb Lead 82			165 Holmium 67	о Ц	Einsteinium 99	(r.t.p.).
	≡		÷	. u	5 Boron	27 A1	Aluminium 13	70 Ga	Gallium 31	115 In	Indium 49	204 T 1 Thallium 81			162 Dysprosium 66	ځ	Californium 98	pressure
								65 Zn	Zinc 30	112 Cd	Cadmium 48	201 Hg Mercury 80			159 Tb Terbium 65	ц Ц	Berkelium 97	ature and
								64 Cu	Copper 29	108 Ag	Silver 47	197 Au Gold 79			157 Gd Gadolinium 64	Ę	Curium 96	n temper
dno								29 N	Nickel 28	¹⁰⁶	Palladium 46	195 Pt Platinum 78			152 Eu 63	۳ م	Americium 95	m³ at roor
Ğ			_					° ²	Cobalt 27	103 Rh	Rhodium 45	192 I r Iridium 77			150 Sm Samarium 62	ā	Plutonium 94	as is 24 dr
		Hydrogen						56 Fe	lron 26	101 Ru	Ruthenium 44	190 OS Osmium 76			Promethium 61	qN	Neptunium 93	of any ga
								55 Mn	Manganese 25	ЦС	Technetium 43	186 Re Rhenium 75			144 Neodymium 60	238	Uranium 92	one mole
								C 23	Chromium 24	[%] O	Molybdenum 42	184 V Tungsten 74			141 Pr Fraseodymium 59	ő	Protactinium 91	olume of
								51	Vanadium 23	88 ND	Niobium 41	181 Ta Tantalum 73			140 Ce Cerium 58	232 Th	Thorium 90	The v
								⁴⁸	Titanium 22	Z 9	Zirconium 40	178 Hathium 72			1	mic mass	nic) number	
						1		45 Sc	Scandium 21	® ≻	Yttrium 39	139 Lanthanum 57 *	227 AC	Actinium 89 †	d series series	= relative ator = atomic svm	= proton (ator	
	=		σ	, d	Beryllium 4	Mg	Magnesium 12	C 40	Calcium 20	°s S	Strontium 38	137 Baa Barium 56	226 Ra	Radium 88	anthanoic Actinoid s	× a	ھ ¢	
	-		7		3 Lithium	Na 23	Sodium 11	® ¥	Potassium 19	85 Rb	Rubidium 37	133 CS Caesium	ŗ	Francium 87	58-71 L 90-103	, av	а О	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of