

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

o

 ∞

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions. A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 20 printed pages.

[Turn over

		3 Marine Day
(b)	Exp	plain the following using the ideas of conduction, convection and radiation.
	(i)	Houses in hot climates are often painted white.
		[1]
	(ii)	A saucepan has a metal base but a plastic or wooden handle.
		[1]
	(iii)	In a kettle, the water is heated at the bottom but all of the water in the kettle becomes hot.
		[2]

(ii) Explain why cell A contains the structures labelled X, but cell B does not.

- (b) The colour of the flower petals is determined by a gene with two alleles, R and R **R** is dominant and produces red flowers, and allele **r** produces white flowers.
- www.papaCambridge.com (i) Complete Table 2.1 to show the phenotype produced by each of the three possible genotypes.

genotype	phenotype
RR	
Rr	
rr	

Table 2.1

- (ii) On Table 2.1, draw a circle around **one heterozygous** genotype. [1]
- (iii) Predict the ratio of red to white flowers that would be produced if two plants with the genotypes **Rr** were crossed.
 - [1]

[1]

(c) A grower has a rare variety of orchid with unusual flowers. She decides to produce new plants from this orchid using an asexual method of propagation.

Suggest the advantages to the grower of using asexual propagation to produce new plants, rather than sowing seeds she has collected from the orchid plant.

[2]

www.papaCambridge.com (a) Fig. 3.1 shows apparatus a student used to investigate the electrolysis of a solution 3 potassium sulfate.

Fig. 3.1

During the experiment shown in Fig. 3.1, two different colourless gases, Q and R, collected in the small test-tubes. Neither of these gases contained any sulfur.

(i)	Name gases Q and R .	
	Q	
	R	[2]
(ii)	Choose one of the gases, Q or R , and describe how the student should test it the gas you have named.	for
	chosen gas	
	test	

.....

.....

[1]

6

www.papaCambridge.com (b) Potassium sulfate solution is made in a neutralisation reaction between an acid alkali.

(i) Suggest a word chemical equation for a reaction between a suitable acid and alkali that would produce potassium sulfate.

- [2]
- (ii) Describe how a neutral solution of potassium sulfate could be obtained using suitable solutions of an acid and an alkali.

..... [3] (iii) State the ionic equation which describes the neutralisation reaction between any

aqueous acid and any aqueous alkali.

[2]

Table 4.1

	alpha	beta	gamma
most penetrating			
most ionising			
not deflected by an electric field			

[2]

Γable	4.2
-------	-----

Some students measured the Table 4.2 shows the results co	level of rrected Tab	9 radiatior for back l le 4.2	n from a ground	radioactive source for 42 compared For radiation.				
time/days	0	7	14	21	28	35	42	ON
level of radiation/ average counts per minute	64	45	33	23	16	12	8	

Describe and explain the pattern in these results.

..... [2]

www.papaCambridge.com PTFE is an important plastic which has many uses in the home and industry. PTFE 5 of polymer molecules.

Fig. 5.1 shows the displayed formula of the monomer that reacts to produce PTFE.

Fig. 5.1

(a) (i) Explain why the molecule shown in Fig. 5.1 is **not** a hydrocarbon.

..... [1]

(ii) Fig. 5.2 shows the outer shell electrons in a carbon atom and a fluorine atom.

Fig. 5.2

Complete the bonding diagram below to show how the outer electrons are arranged in the molecule whose displayed formula is shown in Fig. 5.1.

[2]

www.papaCambridge.com (iii) Complete the diagram below to show the displayed formula of a small section PTFE molecule.

F | C

F

[3]

Your completed formula must contain eight fluorine atoms.

- (b) The element, fluorine, is a halogen in Group 7 of the Periodic Table.
 - (i) Use your knowledge of the physical states of the other halogens to predict and explain whether fluorine is a solid, a liquid or a gas at room temperature.

..... prediction explanation (ii) Use your knowledge of the reactivities of the other halogens to predict and explain whether or not the following halogen displacement reaction will occur. bromine + sodium fluoride \rightarrow sodium bromide + fluorine [2]

7 Some coffee drinks are sold in self-heating cans.

Fig. 7.1 shows a cross-sectional diagram of one design of self-heating can.

Fig. 7.2 shows the can after it has been turned upside down and the pin pushed through the thin metal sheet. This allows the water to fall into the calcium oxide.

(a) Explain briefly why the coffee drink in the self-heating can becomes hot when the water and calcium oxide mix.

www.papacambridge.com 15 (b) (i) Use the position of calcium in the Periodic Table to explain why the end charge of a calcium ion is +2. [3] (ii) The reaction between calcium oxide and water produces the ionic compound calcium hydroxide, Ca(OH)₂. Deduce the electrical charge of the hydroxide ion. Show how you obtained your answer.

[2]

.....

www.papaCambridge.com (a) A student set up the circuit shown in Fig. 8.1 to investigate the relationship betwee 8 voltage across resistor R and the current through resistor R.

- (i) Name the meters labelled X and Y.
- X Υ [1] (ii) Explain the purpose of the variable resistor in the circuit.

 [1]

www.papaCambridge.com 18 (c) Fig. 8.3 shows a battery-operated d.c. electric motor driving a fan. When an current passes through the coil it rotates. magnet Ν S rotating coil split rings Fig. 8.3 (i) Describe what happens to the coil if the poles of the magnets are reversed and the rest of the circuit remains the same. [1] (ii) Describe what happens if a greater electric current is passed through the coil. [1] (iii) Explain the purpose of the split rings. [2]

- www.papacambridge.com A man walking along a road decided to cross to the other side. As he was walking 9 the road, a car sounded its horn, which made him jump. He then crossed the rest on road more quickly.
 - (a) For each of the actions that the man took, state whether it was a reflex action or a voluntary action.

walking along the road	
walking across the road	
jumping in response to the car horn	
crossing the road more quickly	 [2]

(b) Explain one advantage and one disadvantage of reflex actions over voluntary actions.

advantage		
disadvantag	e	
		[2]

(c) State the roles of each of the following parts of the nervous system in a reflex action.

receptor	
motor neurone	
	101
	[2]

					2	20				22.	Daba
	0	Helium 2	Neon Ne 20	40 Ar Argon	84 Krypton 36	131 Xe Xenon 54	Rn Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103	Cambric
	١١٨		Fluorine	35.5 C1 17 Chlorine	80 Br Bromine 35	127 I Iodine 53	At Astatine 85		173 Yb Ytterbium 70	Nobelium 102	age.q
	>		oxygen 0	32 32 Suffur 16	79 Se Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium 69	Mendelevium 101	
	>		Nitrogen	31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi ^{Bismuth}		167 Er Erbium 68	Fermium 100	
	≥	_	Carbon Carbon	28 Silicon	73 Ge Germanium 32	50 Tin S	207 Pb Lead 82		165 Holmium 67	Einsteinium 99	(r.t.p.).
	≡		ہ Born 1	27 27 Auminium 13	70 Ga 31	115 In 149	204 T 1 B1		162 Dysprosium 66	Californium 98	pressure
					65 Zn 30	112 Cadmium 48	201 Hg ^{Mercury} 80		159 Tb ^{Terbium} 65	BK Berkelium 97	ature and
					64 Copper 29	108 Ag Silver	197 Au Gold 79		157 Gd Gadolinium 64	Currium B6	n temper:
dno					59 Nickel	106 Pd Palladium	195 Pt Platinum 78		152 Eu Europium 63	Americium 95	m³ at roor
Ğ			7		59 Co 27	103 Rhodium 45	192 Ir Iridium 77		150 Sm Samarium 62	Plutonium 94	as is 24 dr
		+ Hydrogen			56 Fe Iron 26	101 Ru Ruthenium 44	190 OS Osmium 76		Promethium 61	Neptunium 93	of any ga
					55 Manganese 25	Tcchnetium 43	186 Re Rhenium 75		144 Neodymium 60	238 U ranium 92	one mole
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 V Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium 91	olume of
					51 Vanadium 23	93 Niobium 41	181 Ta Tantalum 73		140 Ce Cerium 58	232 Th 232 90	The v
					48 Titanium 22	91 Zr Zirconium 40	178 Hafnium 72			nic mass Ibol nic) number	
			[45 Scandium 21	89 Yttrium 39	139 La Lanthanum 57 *	227 Actinium 89	l series teries	 = relative ator = atomic sym = proton (aton 	
	=		9 Beryllium	24 Mg Magnesium 12	40 Cal cium 20	88 Srontium 38	137 Ba Barium 56	226 Rad 88	anthanoic Actinoid s	ية × ية • × ع	
	-		Lithium	23 Sodium	39 Potassium 19	85 Rb Rubidium	133 CS Caesium	Fr Francium 37	58-71 L 90-103	ه ه	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of