

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

dridge con

*	
٢	
л	
v	
v	
л	
٢	
N	
×	
0	
v	

CANDIDATE NAME								
CENTRE NUMBER					NDIDA ⁻ MBER	TE [

COMBINED SCIENCE

0653/22

Paper 2 (Core)

May/June 2012

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 18 printed pages and 2 blank pages.

1 (a) Most atoms of metallic elements found in the Earth's crust exist in compounds ores which are contained in rocks.

www.papaCambridge.com The chemical formulae of some metal compounds found in ores, together with the names of the ores, are shown below.

argentite	Ag_2S
chromite	FeCr ₂ O ₄

galena PbS

scheelite CaWO₄

(i)	A binary compound is one that contains only two different elements.
	State which of the compounds in the list above are binary compounds.

[1]

(ii) State the ore from which the metallic element tungsten could be extracted.

(b) Fig. 1.1 shows a diagram of an atom of the element lithium. This atom has a nucleon number (mass number) of seven.

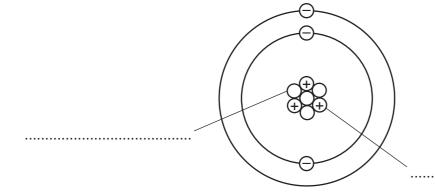
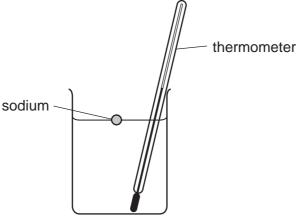
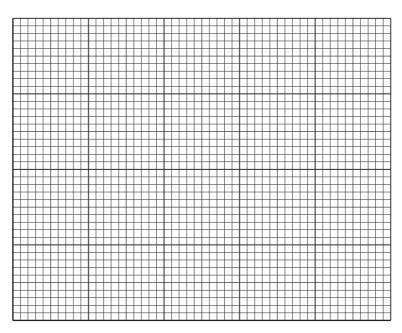



Fig. 1.1

Complete Fig. 1.1 by labelling the particles that exist in the nucleus.

www.PapaCambridge.com (c) (i) A teacher dropped a small piece of sodium into a beaker containing cold was a thermometer. She stirred the mixture until all of the sodium had reacted.

Predict **two** observations that could be made as the sodium reacts with the water. 1 ______ 2 [2] (ii) Potassium is another element in the same group of the Periodic Table as sodium. State one way in which the reaction of potassium with cold water would be different from that of sodium. [1] (iii) Complete the word chemical equation for the reaction between potassium and water. potassium water


[4]

- 2 An athlete warms up by running along a race track.
- www.PapaCambridge.com (a) He accelerates from rest and after 10 seconds reaches a maximum speed of 7 m/s.

He continues at this speed for another 10 seconds.

During the next 5 seconds, he steadily slows down and stops.

Draw a speed-time graph to show the motion of the athlete.

b)	Dur	ring a race the athlete cools down by sweating.	
	(i)	Explain how evaporation cools down the athlete.	
			[2]
	(ii)	State two factors which would increase the rate of evaporation.	
		and	[2]

[1]

(a)	Define the term respiration.								
			[2]						
(b)	Table 3.1 shows the pe	ercentages of three gases in insp	ired air and in expired air.						
	Write the name of each	gas in Table 3.1.							
		Table 3.1							
	gas	percentage in inspired air	percentage in expired air						
		21	17						
		0.04	4						
		0.04	·						
_		78	78						
(c)	Outline how oxygen is		78 [3] a muscle.						
(c)	Outline how oxygen is	78	78 [3] a muscle.						
		78	78 [3] a muscle.						
	When adrenaline is see	78 transported to a respiring cell in a	78 [3] a muscle.						
	When adrenaline is see	transported to a respiring cell in a	78 [3] a muscle. [2] re quickly to the muscles.						
(d)	When adrenaline is sec	transported to a respiring cell in a creted, oxygen is transported morning have this effect?	78 [3] a muscle. [2] re quickly to the muscles.						
(d)	When adrenaline is section (i) How does adrenal (ii) State one situation	transported to a respiring cell in a creted, oxygen is transported mornine have this effect?	78 [3] a muscle. [2] re quickly to the muscles. [1] creases.						

For iner's

(a) Radio waves are electromagnetic waves. Sound waves are not.

State one other way in which radio waves differ from sound waves.

[1]

(b) Fig. 4.1 shows two lists. The first is a list of different types of electromagnetic wave. The second is a list of some of their uses.

Draw lines to connect each type of radiation to its use.

[3]

radiation

use

[3]

rama

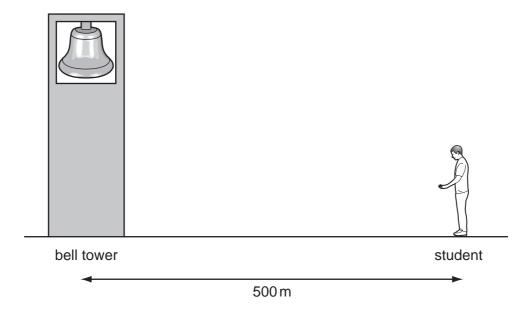
examining bones and teeth

microwave

remote controls for television sets

infra-red

satellite communications


Fig. 4.1

(c) A student carried out an experiment to find the speed of sound in air by watching and listening to a bell being rung.

sterilising surgical instruments

He stood 500 m from the bell.

X-rays

The sound took 1.5 s to travel from the bell to the student.

(i) Calculate the speed of sound.State the formula that you use and show your working.formula usedworking

	m/s	[2]
(ii)	The sound wave produced by the bell had a frequency of 400 Hz.	
	State the approximate frequency range which humans can hear.	
	Hz to Hz	[1]
(iii)	The mass of the bell is 10 000 kg and it has a volume of 1.1 m ³ .	
	Calculate the density of the bell.	
	State the formula that you use and show your working.	
	formula used	
	working	

AAAAA Balla Cann For iner's

- 5 Water supplies are often impure and have to be purified to make them safe for hund drink.
- www.PapaCambridge.com (a) State one process that is used to make water safe for humans to drink. Explain, for the process you have chosen, how this process purifies the water. process

(b) Water is a compound which contains the elements hydrogen and oxygen.

how it purifies

Describe one difference, other than physical state, between the compound water and a mixture of the elements hydrogen and oxygen.

.....

(c) Table 5.1 shows information about water and two compounds that can form mixtures with water.

Table 5.1

compound	melting point/°C	boiling point/°C	solubility in water
water	0	100	-
sodium chloride	801	1413	soluble
hexane	-95	69	insoluble

(1)	solution o	,		mpie	OT	soaium	cnioriae	coula	be	obtained	irom	а
			 								[[2]

	(ii)	Use the information in Table 5.1 to predict and explain whether or not a mix hexane and water could be separated at room temperature (20 °C) by the me of filtration.
		[2]
(d)	A s	tudent burned a small piece of magnesium, using the apparatus shown in Fig. 5.1.
		magnesium burning water Fig. 5.1
		en the reaction finished, the magnesium oxide was mixed with the water in the
		tom of the gas jar.
	(i)	Magnesium oxide is made of positive ions and negative ions.
		Describe briefly what happens to an atom when it is converted into a negative ion.
		[1]
	(ii)	The student added a few drops of full range indicator solution (Universal Indicator) to the mixture of water and magnesium oxide.
		The indicator changed from green to blue.
		Explain why this happens.

3	For iner's
·	Tig
7	Se'C
	OM

- 6 A car is travelling along a road.
 - (a) Many forces act on the car.

(i) State two effects that forces can have on an ob-	(1)
---	-----

1	
2	

[2]

- (ii) State the unit used to measure force. [1]
- (b) Fig. 6.1 shows a car travelling in a straight line. The car is decelerating (slowing down).

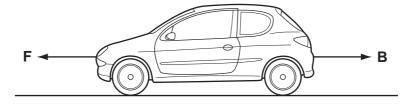
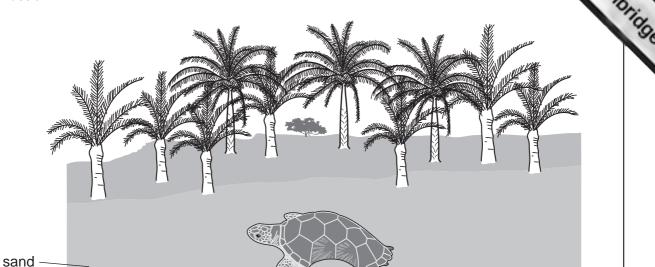


Fig. 6.1

The total forward force on the car is **F** and the total backward force is **B**.

Which force is greater, F or B ?	
--	--

Explain your answer.


[1]

www.PapaCambridge.com (c) Using some of the words below, complete the sentences to explain the energy characteristic which take place in a car when petrol (gasoline) is used to power the car.

boiled	burned	cooled	chemical
heat	kinetic	nuclear	sound

	Petrol (gasoline) contains		energy. The petrol is	
	in	the engine to produce heat e	nergy. The heat energy	
	is changed into	energy wh	ich moves the car. This	
	process is not very efficient a	and much energy is wasted a	s	
	energy and	energy.	[5]
(d)	Petrol (gasoline) is a mixture	of hydrocarbons.		
	Explain why the mixture of dioxide and water vapour.	waste gases (exhaust gases	s) from a car contains carbor	1
			[2]

7 Hawksbill turtles are an endangered species. They lay their eggs in nests in the sal beach.

The sex of hawksbill turtles is determined by the temperature of the sand in which the eggs develop.

- At 29 °C, equal numbers of males and females develop.
- Higher temperatures produce more females.
- Lower temperatures produce more males.

sea

(a) Researchers measured the temperature, at a depth of 30 cm, in two different parts of a beach, on Antigua, where hawksbill turtles lay their eggs. The results are shown in Fig. 7.1. The tops of the bars represent the mean temperature.

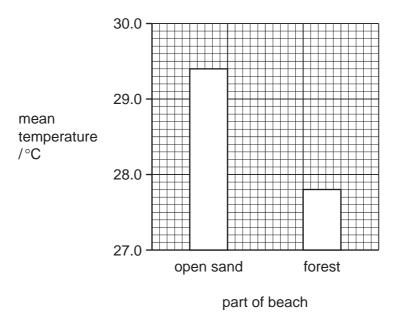


Fig. 7.1

With reference to	o Fig. 7.1, describe the et	fect of the forest on the te	emperature of the							
			[2]							
		of male and female turtl he results are shown in ∃								
	Table									
part of beach	nests producing more males than females	nests producing more females than males	nests producing equal numbers of females and males							
open sand	0	16	0							
in forest	36	0	0							
			[2]							
c) Suggest why hat cut down.	awksbill turtles might be	come extinct if all the fo	rest by the beaches is							
			[2]							
d) State two harm result from defo		ment, other than extincti	on of species, that can							
1										
2										

www.PapaCambridge.com Fig. 8.1 shows apparatus a student used to investigate temperature changes that of 8 during chemical reactions.

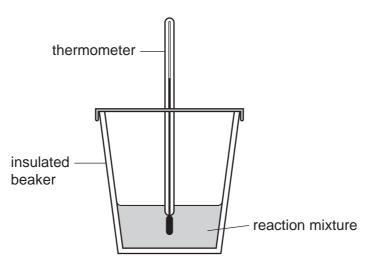


Fig. 8.1

The student added reactants to the insulated beaker and stirred the mixture. She recorded the final temperature of each mixture.

At the start of each experiment, the temperature of the reactants was 22 °C.

Table 8.1 contains the results the student obtained.

Table 8.1

experiment	reactant A	reactant B	final temperature/°C
1	dilute hydrochloric acid	sodium hydrogencarbonate	16
2	dilute hydrochloric acid	potassium hydroxide solution	26
3	magnesium	copper sulfate solution	43
4	copper	magnesium sulfate solution	22

(a)	(i)	Explain which experiment, 1, 2, 3 or 4, was a neutralisation reaction between	an
		acid and an alkali.	

experiment	
explanation	
	[1]

		State and explain which experiment, 1, 2, 3 or 4, was an endothermic reaction experiment explanation [1]	
		15 A.	
	(ii)	State and explain which experiment, 1, 2, 3 or 4, was an endothermic reaction	For
		experiment	Shide let's
		explanation	Se. CO
		[1]	13
	(iii)	Suggest why the temperature did not change when copper was added to magnesium sulfate solution.	
		[1]	
(b)		e student used the apparatus in Fig. 8.1 to carry out two further experiments, 5 and o investigate the exothermic reaction between zinc and copper sulfate solution.	
		experiment 5 the student used zinc powder and in experiment 6 she used a single ce of zinc.	
	The	e mass of zinc in both experiments was the same.	
		ggest and explain briefly in which experiment, 5 or 6 , the temperature increased re quickly.	
	ехр	periment	
	ехр	planation	
		[2]	

														10													7		0	
9	(a)	Ехр	lain wh	at is	s n	nea	nt t	oy t	he	teri	n e	enz	yn	ne.																aCa.
			•••••		••••	•••••				••••						••••														[2]
	(b)	Fig.	9.1 sh	ows	s th	ie e	ffec	ct o	f pł	Ηо	n tl	he	ac	tivi	ty (of	an	er	ızy	me) .									
																														
																											\sharp			
											\blacksquare					X									H		Ħ			
			te of									/					\setminus										\exists			
		re	action														\mapsto	\downarrow									\sharp			
											/	#						\downarrow		Ħ					Ħ		Ħ			
																			X											
			0 -	+			Ш		1		Щ				Н	H		+		Y		Н			H	Н	Ц			
				1		2	3	3	4	•	5		6			7		8		9		1	0	1	11		12			
												Fig	. (·	Н															
		Des	cribe th	ne e	effe	ect c	of p	H	on t	he	act	ivit	y c	of tl	his	eı	ızy	m	e.											
																												•••••		
																														[2]
	(c)		enzyme yme is																ydr	oc	hlc	ric	а	cid	is	s	ecr	ete	d. ¯	This
		(i)	On Fig	_) .1 ,	sk	etc	h a	CU	ırve	e to	s	ho	w I	าดเ	W	рН	a	ffe	cts	th	e a	act	tivit	ty	of	thi	s s	tom	ach [1]
		/::\			د	ما ام		b a		: 4	۔ ماہ	-4			h 4	- -		ما، ،	۔:ا۔	:1				. :	4.	415		. میل	مر م ام	
		(ii)	After the Pancre food in	eatio	сј	uice	e, v	whi	ch																					
			Explair	n wl	hv	the	sto	om:	ach	en	ZVI	ne	sto	ons	s w	or/	kin	a١	wh	en	it e	ent	ers	s th	ne :	dιι	ode	enu	ım.	
					,					J.,	- <i>,</i> '		J.,	- p-(٠.	1	J '			., `	- · · ·		- ••	. •			J		

.....

(d)	Enzymes in the human digestive system help to break down large food molecules.	3
	Explain why this is important.	
	[2]	

BLANK PAGE

www.PapaCambridge.com

BLANK PAGE

www.PapaCambridge.com

The Periodic Table of the Elements DATA SHEET

	0	4 He lium	20 Ne Neon 10 Argon Argon 18	84 Kr Kry pton 36	131 Xe Xenon Xenon 54	Radon 86		175 Lu
Group	=>		19 Fluorine 9 35.5 C1	80 Br Bromine	127 	At		173 Yb
	>		0000 Oxygen Oxygen Sulfur	79 Se Selenium	128 Te Tellurium	Po Polonium 84		169 Tm
	>		Nitrogen 8 31 Phosphous 15	75 AS Arsenic	Sb Antimony	209 Bi Bismuth		167 Er
	≥		Carbon Carbon 28 Silicon 4	73 Ge Germanium	119 Sn Tin	207 Pb Lead		165 Ho
	≡		11 B Boron 6 5 A A A A A A A A A A A A A A A A A A	70 Ga Gallium 31	115 n Indium			162 Dy
				65 Zn Zinc	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb
				64 Copper	108 Ag Silver 47	197 Au Gold		157 Gd
				59 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu
				59 Co Cobalt	103 Rh Rhodium 45	192 F		. Sm
		Hydrogen		56 F.e. Iron	- 4	190 Os Osmium 76		Pa
				Mn Manganese	Tc Technetium 43	186 Re Rhenium 75		4 S
				52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr
				51 Vanadium 23	93 Nb Niobium	181 Ta Tantalum		140 Ce
				48 T Titanium	91 Zr Zirconium 40	178 # Hafnium		
				Sc Scandium	89 < Yttrium 39	139 La Lanthanum 57 *	227 Ac Actinium 89	series eries
	=		Berylium 4 24 Magnesium 12	40 Ca Calcium	88 Sr Strontium	137 Ba Barium 56	226 Ra Radium	*58-71 Lanthanoid series
	_		Lithium 3 Lithium 3 23 8 Sodium 11	39 K Potassium 19	85 Rb Rubidium 37	133 Cs Caesium 55	Fr Francium 87	*58-71 Lt

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

www.papaCambridge.com

Mo

Fn

Es

ਲ

Currium

Am

å

Ра

232 **1** Thorium

90

b = proton (atomic) number

a = relative atomic mass X = atomic symbol

Key

Plutonium Pu

Californium 98 ರ

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.