

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Oldie Com

*	
N	
л	
v	
œ	
л	
_	
0	
7	
\neg	

CANDIDATE NAME							
			1				
CENTRE				CANDIDATE			
NUMBER				NUMBER			

COMBINED SCIENCE

0653/32

Paper 3 (Extended)

May/June 2012

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 19 printed pages and 1 blank page.

1 (a) Most atoms of metallic elements found in the Earth's crust exist in compounds ores which are contained in rocks.

www.PapaCambridge.com The chemical formulae of some metal compounds found in ores together with the names of the ores are shown below.

argentite	Ag_2S	
chromite	FeCr ₂ O ₄	
galena	PbS	
scheelite	CaWO ₄	
•	s one that contains only two different elements.	
		[1]

(b) Fig. 1.1 shows an incomplete diagram of an atom of an element Q in which only the outer shell electrons are shown.

(ii) State the ore from which the metallic element tungsten could be extracted.

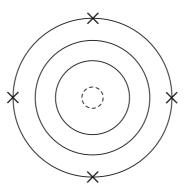
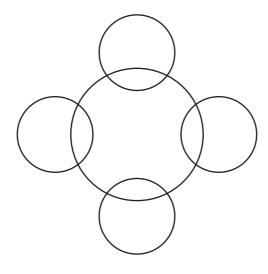


Fig. 1.1


(i) Name element **Q** and explain your answer.

(i)

name		
explan	nation	
•••••		
		[3]

(ii) Element Q combines with hydrogen to form covalent molecules which ha formula QH₄.

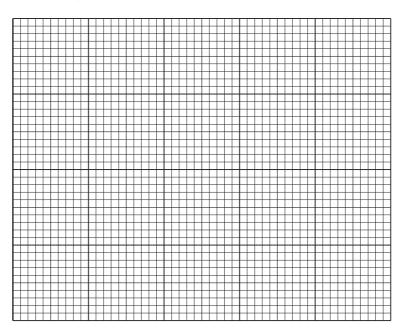
www.papaCambridge.com Complete the bonding diagram below to show how the bonding electrons are arranged.

[2]

(iii) Element **Q** may be extracted from its oxide, QO₂, in a reaction with carbon, C.

In this reaction, the compound carbon monoxide, CO, is formed in addition to the free element Q.

Suggest a balanced symbol equation for this reaction.


[2	1
	-

- 2 An athlete warms up by running along a race track.
- www.PapaCambridge.com (a) He accelerates from rest and after 10 seconds reaches a maximum speed of 7 m/s.

He continues at this speed for another 10 seconds.

During the next 5 seconds, he steadily slows down and stops.

Draw a speed-time graph to show the motion of the athlete.

[3]

- (b) He then competes in a 200 m running race.
 - (i) He completes the race in 25 seconds.

Calculate his average speed.

State the formula that you use and show your working.

formula used

working

(ii) The mass of the athlete is 70 kg.

Calculate the kinetic energy of the athlete when he is travelling at 6 m/s.

State the formula that you use and show your working.

formula used

working

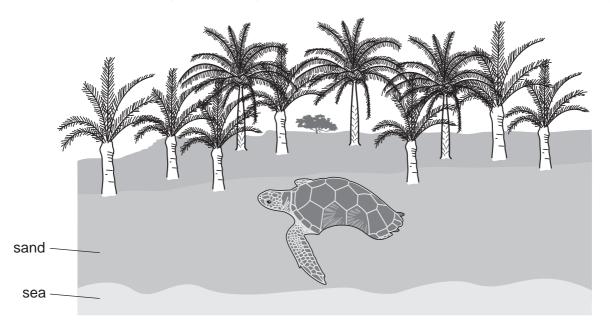
			[2]
(c)	Dui	ring a race the athlete cools down by sweating.	
	(i)	Describe and explain, in terms of the movement of water molecules, h evaporation cools down the athlete.	ow
			[3]
	(ii)	State two factors which would increase the rate of evaporation.	
		and	[1]

(a)	Define the term respiration.	CS
		[2]
(b)	State the balanced symbolic equation for aerobic respiration.	
		[2]
(c)	Outline how oxygen is transported to a respiring cell in a muscle.	
		 [2]

		7	Papac
(a) F	Radio waves are electromagn	netic waves. Sound waves are not.	ASC.
S	State two other ways in which	n radio waves differ from sound waves.	
1			
2			
			[2
(b) [Praw lines to connect each ty	pe of radiation to its use.	
	radiation	use	
	gamma	examining bones and teeth	
	microwave	remote controls for television sets	
	infra-red	satellite communications	
	X-rays	sterilising surgical instruments	
			[2
	isible light is another type of	•	
T T	The frequency of green light is The wavelength of green light	s 5 x 10 ¹⁴ Hz. : is 6 x 10 ⁻⁷ m.	
C	Calculate the speed of green	light.	
S	State the formula that you use	e and show your working.	
	formula used		

working

[2]


(d)	Describe how to find the density of a small irregular object such as a tooth.	For iner's
		Tage Co.
		133
	[3]	

				them safe for hun			
			9	1.0			
Wat drin		en impure and have to	be purified to make	them safe for hun			
(a)	State one way that	harmful bacteria may	be removed from wat	ter during purification.			
				[1]			
(b)	Water is a compou	nd which contains the	elements hydrogen a	nd oxygen.			
		rence, other than phys ements hydrogen and		ne compound water and			
				[2]			
	Table 5.1 shows in with water.	formation about water	r and three compound	ds that can form mixtures			
		Table	5.1				
	compound	melting point/°C	boiling point/°C	solubility in water			
	water	0	100	_			
	sodium chloride	801	1413	soluble			
	silicon dioxide	1650	2230	insoluble			
	hexane	– 95	69	insoluble			
	(i) State which compound in Table 5.1 could be separated from a mixture with water by filtration.						
	(ii) Explain why th water by filtrati		nds cannot be separa	ated from a mixture with			
				[2]			

		10	
(d)	(i)	A student was asked to use the reaction between the insoluble compound carbonate and dilute sulfuric acid to make a solution that contained only the zinc sulfate. Describe the main steps of a method the student should use to carry out this task. You may draw labelled diagrams if it helps you to answer this question.	For iner's
		Describe the main steps of a method the student should use to carry out this task.	Se.Co.
		You may draw labelled diagrams if it helps you to answer this question.	333
			ı
		[3]	
	(ii)	Suggest the word chemical equation for the reaction between zinc carbonate and dilute sulfuric acid.	
		[2]	

	the state of the s
	11
(a)	A car tyre is inflated with air using a footpump. The mechanic using the footpump notices that the pump gets hot.
	A car tyre is inflated with air using a footpump. The mechanic using the footnotices that the pump gets hot. The air going into the tyre is warmed up by the pumping. Describe what happens to the motion of the air molecules as the air warms up.
	[1]
(b)	Many forces act on a car tyre during a car journey.
	State three effects that forces can have on an object.
	1
	2
	3
	[2]
(c)	Car brake lights (stop lights) light up when the driver presses on the footbrake pedal. The pedal acts as a switch.
	Draw a circuit diagram including a battery to show how this works.
	Design your circuit so that, if one brake light fails, the other still lights up.

7 Hawksbill turtles are an endangered species. Adults spend most of their lives at state females come ashore to lay their eggs. They bury their eggs in nests in the sand, en on a beach or in the vegetation that grows just behind the beach.

The sex of hawksbill turtles is determined by the temperature of the sand in which the eggs develop.

- At 29 °C, equal numbers of males and females develop.
- Higher temperatures produce more females.
- Lower temperatures produce more males.

There is concern that in recent years too many female turtles have been produced, and not enough males.

(a) Researchers measured the temperature, at a depth of 30 cm, in four different parts of a beach, on Antigua, where hawksbill turtles lay their eggs. The results are shown in Fig. 7.1. The tops of the bars represent the mean temperature.

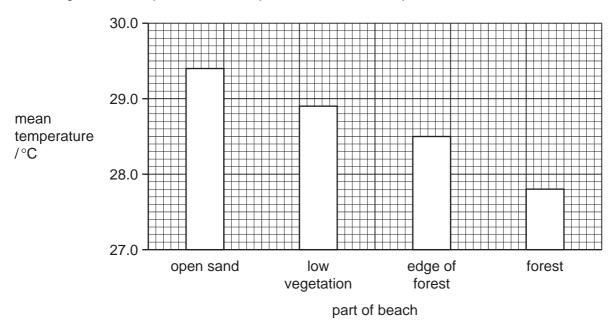


Fig. 7.1

	With reference to of the sand.	Vith reference to Fig. 7.1, describe the effect of the presence of trees on the temperature of the sand.				
				[2]		
(b)		ent parts of the beach. T	proportion of male and female turtles hatching from nests beach. The results are shown in Table 7.1. Table 7.1 ducing sthan more females than males 16 0 24 6 0 11 0 0			
	part of beach	nests producing more males than females	more females than	equal numbers of		
	open sand	0	16	0		
	low vegetation	31	24	6		
	edge of forest	61	0	11		
	in forest	rchers counted the proportion of male and female turtles hatching from nests different parts of the beach. The results are shown in Table 7.1. Table 7.1 Table 7.1				
	(i) State the part of the beach in which most female hawksbill turtles chose to lay their eggs.					
			xplain the results for nes	ts in open sand and in		
				[2]		
(c)	been cut down t	o make the beaches mo	re attractive to tourists.	•		
		nests producing more males than females n sand 0 16 0 16 0 17 18 19 19 19 19 19 19 19 19 19				

For iner's

	14 WANN, DOLLAR	
(d)	Describe two harmful effects to the environment, other than extinction of species may result from deforestation.	For iner's
	1	Original Co.
		ATT.
	2	1

[4]

BLANK PAGE

Please turn over for Question 8.

www.PapaCambridge.com

www.PapaCambridge.com Fig. 8.1 shows apparatus a student used to investigate temperature changes that of 8 during chemical reactions.

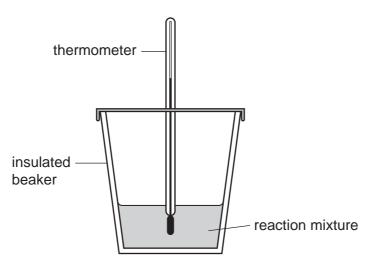


Fig. 8.1

The student added reactants to the insulated beaker and stirred the mixture. She recorded the final temperature of each mixture.

At the start of each experiment, the temperature of the reactants was 22 °C.

Table 8.1 contains the results the student obtained.

Table 8.1

experiment reactant A 1 dilute hydrochloric acid 2 dilute hydrochloric acid		reactant B	final temperature/°C	
		sodium hydrogencarbonate	16	
		potassium hydroxide solution	26	
3 magnesium		copper sulfate solution	43	
4 copper		magnesium sulfate solution	22	

(a)	Explain which experiment, 1, 2, 3 or 4, was a neutralisation reaction between an	acid
	and an alkali.	

experiment	
explanation	
	[1]

	State and explain which experiment, 1, 2, 3 or 4, was an endothermic reaction. experiment explanation [1]
(b)	State and explain which experiment, 1, 2, 3 or 4, was an endothermic reaction.
	experiment
	explanation
	[1]
(c)	Apart from the change in temperature, state one other observation the student could make when she carried out experiment 3 .
	[1]
(d)	Explain, in terms of reactivity, why a reaction occurred in experiment 3.
	[1]
(e)	Suggest and explain a reason for the result obtained in experiment 4.
	[2]

(a) Fig. 9.1 shows the effect of pH on the activity of an enzyme.

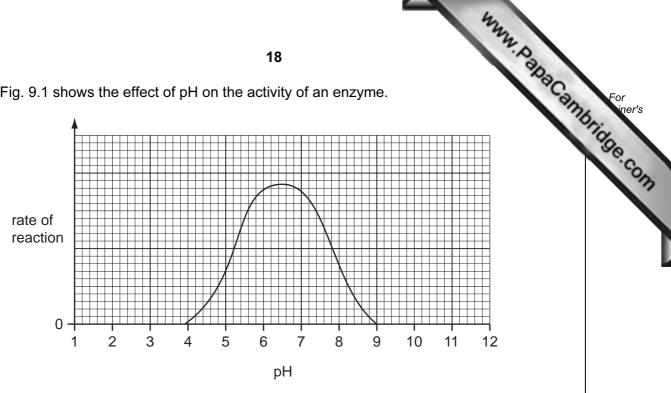


Fig. 9.1

	S S S S S S S S S S S S S S S S S S S
(i)	Describe the effect of pH on the activity of this enzyme.
	[2
(ii)	Explain why pH affects the enzyme in this way.
	[2
(iii)	An enzyme digests food in the human stomach, where hydrochloric acid is secreted. This enzyme is adapted to work best in these conditions.
	On Fig. 9.1, sketch a curve to show how pH affects the activity of this stomach enzyme.
(iv)	After the food has been in the stomach for a while, it passes into the duodenum Pancreatic juice, which contains sodium hydrogencarbonate, is mixed with the food in the duodenum.
	Explain why this stomach enzyme stops working when it enters the duodenum.
	[2

	May May 1	
	19	1
(b)	Explain how chemical digestion enables body cells to obtain nutrients.	Can
		[3]

The Periodic Table of the Elements DATA SHEET

		_ 0 §	o 0 5	o L 5	4 , = of	≃ o ē	E ğ		ر ت
	0	Helium	20 Neon	40 Ar Argon	84 Kr ypton 36		Radon 86		175 Lu
	=		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine	127 	At Astatine 85		173 Yb
	>		16 Oxygen 8	32 S Sulfur	79 Selenium 34	128 Te Tellurium	Po Polonium 84		Tm T
	>		14 N itrogen 7	31 Phosphorus	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth		167 Er
	≥		12 Carbon	28 Si Silicon	73 Ge Germanium	Sn Tin 50	207 Pb Lead		165 H
	≡		11 Boron	27 A1 Aluminium 13	70 Ga Gallium	115 n ndium 49	204 T 1 Thallium		162 Dy
					65 Zn Zinc	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb
					64 Copper	108 Ag Silver 47	197 Au Gold		157 Gd
Group					59 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu
Gre					59 Co Cobalt	103 Rh Rhodium 45	192 F		150 Sm
		1 Hydrogen			56 Fe Iron	Ru Ruthenium	190 Os Osmium 76		Pm
					Mn Manganese	Tc Technetium 43			441 D
					Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr
					51 V Vanadium 23	93 Niobium 41	181 Ta Tantalum		140 Ge
					48 T	2r Zrconium 40	178 Hf Hatnium * 72		
					Sc Scandium 21	89 ×	139 La Lanthanum 57 *	227 Ac Actinium	series
	=		9 Be Beryllium	24 Mg Magnesium	40 Ca Calcium	Sr Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid serie
	_		7 Li Lithium	23 Na Sodium	39 K Potassium 19	Rb Rubidium	133 Cs Caesium 55	Fr Francium 87	*58-71 Lanthanoid series

www.papaCambridge.com **T**Pullium Mo Erbium Fm **H**olmium Es Californium 98 ٥ ರ **Terbium** ਲ gq **Currium Europium** Am Plutonium Pu Š Ра ቯ **Serium** 232 **Th** 28 90 b = proton (atomic) number

a = relative atomic mass X = atomic symbol

Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.