

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions. A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 23 printed pages and 1 blank page.

- www.papaCambridge.com 1 Sugar cane is a food crop grown in Australia. It is harvested and then transported of trains to the processing plant.
 - Fig. 1.1 shows one of the trains carrying sugar cane.

Fig. 1.1

(a) The mass of the engine and empty trucks is 20000 kg and the mass of the sugar cane transported is 10000 kg.

The train travels at a speed of 0.5 m/s.

(i) Calculate the kinetic energy of the loaded train.

State the formula that you use and show your working.

formula used

working

[2]

(ii) To travel at this speed, a driving force of 1000000 N is needed.

Calculate the work done by the engine of the train when it travels 1 km.

State the formula that you use and show your working.

formula used

working

[2]

www.papaCambridge.com (iii) It takes the train 5 minutes to travel 1 km. Calculate the power output of the State the formula that you use and show your working. formula used working

[2]

(b) The track for the train is composed of short lengths of steel rail with small gaps left between them as shown in Fig. 1.2.

Suggest a reason for leaving these small gaps.

..... [2]

4 n element is a substance that is made of atoms which have the same proton not state that is made of atoms which have the same proton not state atoms contain protons, neutrons and electrons. i) Name the element whose atoms do not usually contain any neutrons. (1) The electronic structures (configurations) of atoms of three elements, P, Q and R are shown below. P 2,8,1 Q 2,8 R 2,7 (i) Use the electronic structures to state and explain the group numbers in the Periodic Table that contain elements P, Q and R. P Group Q Group
An element is a substance that is made of atoms which have the same proton in Most atoms contain protons, neutrons and electrons. a) Name the element whose atoms do not usually contain any neutrons. [1 b) The electronic structures (configurations) of atoms of three elements, P, Q and R are shown below. P 2,8,1 Q 2,8 R 2,7 (i) Use the electronic structures to state and explain the group numbers in the Periodic Table that contain elements P, Q and R. P Group Q Group R Group
 (a) Name the element whose atoms do not usually contain any neutrons. [1] (b) The electronic structures (configurations) of atoms of three elements, P, Q and R are shown below. P 2,8,1 Q 2,8 R 2,7 (i) Use the electronic structures to state and explain the group numbers in the Periodic Table that contain elements P, Q and R. P Group
(b) The electronic structures (configurations) of atoms of three elements, P, Q and R are shown below. P 2,8,1 Q 2,8 R 2,7 (i) Use the electronic structures to state and explain the group numbers in the Periodic Table that contain elements P, Q and R. P Group Q Group
 (b) The electronic structures (configurations) of atoms of three elements, P, Q and R are shown below. P 2,8,1 Q 2,8 R 2,7 (i) Use the electronic structures to state and explain the group numbers in the Periodic Table that contain elements P, Q and R. P Group Q Group R Group
P 2,8,1 Q 2,8 R 2,7 (i) Use the electronic structures to state and explain the group numbers in the Periodic Table that contain elements P, Q and R. P Group Image: Control of the periodic table that contain elements P, Q and R. P Group Image: Control of table table table that contain elements P, Q and R. Image: Control of table
 (i) Use the electronic structures to state and explain the group numbers in the Periodic Table that contain elements P, Q and R. P Group Q Group R Group
P Group Q Group R Group
Q Group
R Group
explanation
[2
(ii) State and explain which of the elements, P , Q or R , is the least reactive.
element
explanation
[1
(iii) State and explain which one of the elements, P, Q or R, is a good conductor o electricity.
element
explanation
[1

www.papaCambridge.com (c) Most metallic elements occur combined with non-metals in the Earth's cru thousands of years, humans have carried out chemical reactions to extract metals their ores.

Fig. 2.1 shows a cross-section through a shaft furnace which was a simple reaction vessel used by ancient civilisations to extract iron.

Fig. 2.1

In this shaft furnace the mixture of raw materials consisted of charcoal and iron ore. Charcoal contains mainly carbon, and iron ore contains iron oxide.

Nowadays iron is extracted from iron ore in a blast furnace.

(i) Name another raw material, which is added to a modern blast furnace but which is not present in the shaft furnace in Fig. 2.1.

Explain briefly why this material is used.

name of material reason this material is used [2] (ii) Iron is extracted from iron ore when a gaseous oxide of carbon reacts with iron oxide. Write a **word** chemical equation for this reaction.

(d)	(i)	6 Suggest, in terms of relative reactivity, why a mixture of aluminium oxit carbon does not produce any metallic aluminium in a blast furnace.	Cant	For iner's
			[2]	
	(ii)	Name the process that is used to extract aluminium from aluminium oxide.	[1]	

www.papaCambridge.com

3 Marmots are herbivorous mammals. Fig. 3.1 shows a marmot.

Fig. 3.1

A study has been carried out into the marmots living in Colorado, USA.

The winters in this part of Colorado are so cold that the marmots would not be able to find enough food to eat. Instead, they allow their body temperature to drop much lower than normal and stay inactive for many months. This is called hibernation. They do not eat while they are hibernating. They emerge from hibernation in spring.

(a) Before they hibernate, marmots build up large fat stores beneath their skin.

Suggest and explain what marmots must do in order to build up large fat stores in their bodies.

[2]

www.papaCambridge.com (b) Fig. 3.2 shows the percentage of marmots with different body masses that through the winter.

Fig. 3.2

(i) Describe the relationship between a marmot's body mass and its chance of surviving the winter.

..... [2] (ii) Suggest how a layer of fat beneath the skin can reduce heat transfer from a hibernating marmot's body to its surroundings.[1] (c) In the last twenty years, spring has been arriving earlier in the year in Colorado. This is a result of global warming. Explain how human activities, other than the combustion of fossil fuels, are thought to contribute to global warming. [3]

www.papaCambridge.com (d) Fig. 3.3 shows the mean body mass of the marmots on the first day of August summer) between 1976 and 2006.

(i) Describe the general trend shown in Fig. 3.3.[1] (ii) Suggest how the earlier arrival of spring could be responsible for this trend. [1]

....

www.papaCambridge.com 4 Fig. 4.1 shows the apparatus a student used to investigate the effect of changing t concentration on the rate of reaction between excess dilute hydrochloric acid magnesium. At the start of the experiment the measuring cylinder contained no gas an was full of water.

Fig. 4.1

To carry out his investigation the student used the following method.

- He dropped the magnesium into the dilute acid.
- He immediately placed the bung into the side-arm test-tube and started a stopclock.
- He measured the volume of gas in the measuring cylinder every half minute, for eight minutes.

He carried out two experiments, **A** and **B**, in which the only variable that he changed was the concentration of the hydrochloric acid.

(a) State two other variables that the student needed to keep the same in experiments A and **B**.

1	
2	 [1]

Fig. 4.2

(i) In which experiment, **A** or **B**, did the student use hydrochloric acid which had the higher concentration?

Explain your answer.

experiment	
explanation	
	[1]

www.papaCambridge.com 12 (ii) The student was told that he could calculate the average rate of reaction using maximum volume of gas collected average rate of reaction = minimum time taken to collect maximum volume Use the information in Fig. 4.2 to calculate the average rate of reaction for experiment A. Show your working and state the units. [3] (c) The balanced symbolic equation for the reaction between hydrochloric acid and magnesium is shown below. Mg (s) + 2HCl (aq) \longrightarrow MgCl₂ (aq) + H₂ (g) (i) What is meant by the state symbol (aq) in this equation?[1] (ii) Suggest why the reaction in both experiments A and B above produced the same volume of gas. [2]

BLANK PAGE

Please turn over for Question 5.

(b) A girl shouts and waves to another girl in the school playground as shown in Fig. 5.1.

The sound energy and the light energy both travel from one girl to the other by wave motion.

(i) State whether sound waves and light waves are transverse or longitudinal.

Sound waves are ______. Light waves are _____. [2]

(ii) The girls could have communicated with each other using their mobile phones (cell phones).

Name the type of electromagnetic wave used to communicate between mobile phones.

......[1]

Fig. 6.1 shows part of a section across a root from a radish plant, photographed the 6 microscope.

- www.PapaCambridge.com (c) A complete radish plant was placed with the lower part of the root standing in w soluble red dye was added to the water. After a while, the veins in the leaves of radish plant became red.
 - (i) Name the tissue in the radish plant through which the coloured water was transported from the roots to the leaves.
 - [1]
 - (ii) On Fig. 6.1, write the letter A to show the position of this tissue in the root. [1]
 - (iii) Water was drawn up through the radish plant because water vapour was constantly escaping from its leaves. A plastic bag was placed over the leaves of the radish plant, and the water vapour formed colourless droplets of liquid water on the bag as it condensed.

Explain why these water droplets were not red.

..... [2]

www.papacambridge.com (a) (i) Draw a circuit diagram that a student could use to investigate how the characteristic diagram that a student could use to investigate how the characteristic diagram. 7 potential difference across a lamp affects the current flowing through it.

[3]

(ii) During his investigations, the student measured the voltage across the lamp as 3.0 V and the current passing through the lamp as 0.3 A.

Calculate the resistance of the lamp.

State the formula that you use and show your working.

formula used

working

......[2]

19 Table 7.1 shows some information about six pieces of wire, all at room temp 20 °C). Table 7.1							
wire	metal composition	length/cm	cross-sectional area/mm ²				
Α	copper	10	0.5				
В	nichrome	10	0.5				
С	copper	20	0.5				
D	nichrome	20	0.5				
Е	copper	10	1.0				
F	copper	20	1.0				

(i) Which wire, **B** or **D**, will have the greater resistance?

Explain your answer.

wire

(ii) Which wire, A or E, will have the greater resistance?

Explain your answer.

wire

.....[1]

[1]

(c) A plastic rod is rubbed with a cloth.

The rod becomes charged.

There are two types of electric charge.

- (i) State the names of these charges.
 - 1
 - 2

- [1]
- (ii) Charged particles are transferred between the rod and cloth.
 - Name the charged particles transferred. [1]

Hydrocarbons are compounds that contain carbon and hydrogen only. 8

The hydrocarbon that contains the simplest molecules is methane.

www.papaCambridge.com (a) (i) The diagrams below show an atom of carbon and an atom of hydrogen.

Complete the covalent bonding diagram of a molecule of methane to show how the bonding electrons are arranged.

[2]

(ii) Complete the molecular structure diagrams below to show molecules of the hydrocarbons ethane and ethene.

ethane	H—C
ethene	C H

20

www.papacambridge.com (b) In many countries, ethanol, C_2H_6O , is added to hydrocarbon fuels such as gason The products of complete combustion of ethanol are the same as those hydrocarbons such as methane. Suggest the word chemical equation for the complete combustion of ethanol. [2] _____

	22 XXXXV. D	
(a)	Define the term <i>hormone</i> .	5
		idge
	[3]	
(b)	Adrenaline is sometimes called the 'fright, flight or fight' hormone. It is produced when a person is frightened.	
	One effect of adrenaline is to increase a person's pulse rate.	
	Explain how this could help a person to run away from the thing that has frightened them.	
	[2]	

- (c) Plants also produce hormones. One plant hormone is auxin. Auxin helps plant shoots to respond to light coming from only one direction.
 - (i) State the correct term for the growth response of a plant to light coming from only one direction.

www.papacambridge.com (ii) Explain how auxin helps a plant shoot respond to light coming from on direction. You may use a diagram as part of your explanation.

 [3]

Copyright Acknowledgements:

Question 6 Photograph

© B23WP8 cross section of a radish root; Biodisc/Visuals Unlimited/Alamy.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of

DATA SHEET The Periodic Table of the Elements

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											m
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					1	2	24		1		
$ \begin{array}{ \hline \\ \hline $		0	4 Helium 2	20 Neon Ne	40 Ar Argon	84 Krypton 36	131 Xenon 54	Radon 86		175 Lutetium 71	Lr Lawrencium 103
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		١١٨		9 Fluorine	35.5 C1 17 Chlorine	80 Bromine 35	127 1 lodine 53	At Astatine 85		173 Yb Vtterbium	Nobelium 102
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		N		6 Oxygen 0	32 Sulfur 16	79 Selenium 34	128 Te Tellurium 52	Polonium 84		169 Thulium	Mendelevium 101
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		>		14 Nitrogen	31 Phosphorus 15	75 AS ^{Arsenic} 33	122 Sb Antimony 51	209 Bismuth 83		167 Erbium 68	Fermium 100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2		6 Carbon 6	28 Silicon	73 Ge Germanium 32	119 So Tin	207 Pb Lead		165 HO Holmium	Einsteinium 99
$ \begin{bmatrix} 1 & & & \\ 1 & & & \\ 1 & & & \\ 1 & & & \\ 1 & & & \\ 1 & & & \\ 1 & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & \\ 1 & & & \\ 1 & & & \\ 1 & & & \\$		≡		5 Boron 1	27 Aluminium 13	70 Ga ^{Gallium}	115 1 7 Indium 49	204 T 1 Thallium 81		162 Dysprosium 66	Cf Californium 98
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				L		65 Zn 30 ^{Zinc}	112 Cd Cadmium 48	201 Hg ^{Mercury} 80		159 Tb ferbium	BK Berkelium 97
$ \begin{bmatrix} 1 & & & \\ 1 & & & \\ 1 & & & \\ 1 & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & &$						64 Copper 29	108 AG Siver	197 Au Gold		157 Gd Gadolinium 64	6 Curium 96
1 1 1 1 1 11 1 1 11 1	dn					59 Nickel Z	106 Pd Palladium	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95
1 1 1 1 1 1 1 1 <td>Gro</td> <td></td> <td></td> <td></td> <td></td> <td>59 59 Cobait</td> <td>103 Rhodium 45</td> <td>192 I T Iridium</td> <td></td> <td>150 Samarium S2</td> <td>Putonium 94</td>	Gro					59 59 Cobait	103 Rhodium 45	192 I T Iridium		150 Samarium S2	Putonium 94
1 1 1 7 9 1 1 1 1 7 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 23 24 5 123 133 137 133 137 138 133 137 138 133 137 138 133 137 138 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 134 133 133 134 133 134 144 133 135 134 133 138 134 133 138 134 134 134 135 138 135			Hydrogen			56 Front 56	101 Ruthenium 44	190 OS Osmium 76		Promethium	Neptunium 33
1 1 1 7 9 Lithum 1 Benylluum 23 24 8 8 9 40 1 Ageoretum 1 1]		55 Manganese	Technetium	186 Renium 5		144 Neodymium	238 Uranium 32
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 23 24 45 8 40 45 8 40 45 9 23 24 9 23 24 9 39 40 40 5 1 9 2 2 8 2 2 133 137 133 133 137 133 133 137 133 133 138 178 8 138 178 8 138 178 8 138 178 133 138 178 133 138 178 133 138 178 134 141 135 138 136 178 137 139 138 178 139 178						52 Chromium .4	96 Molybdenum .2	184 V Tungsten 7		141 Pr Praseodymium	Protactinium
1 1 1 7 9 1 1 1 1 23 24 Na Magnesum 23 24 Na Magnesum 12 39 30 40 40 45 33 40 41 2 33 40 8 8 8 8 8 8 8 8 133 137 133 137 133 137 133 139 133 139 133 139 133 139 133 137 5 7 7 7 5 7 7 139 133 139 133 139 133 139 134 1 6 57 7 7 5 7 7 139 13 138 133 138 134 1 6 77 7 7						Vanadium 3	B Niobium 4	181 Ta Tantalum 3		Cerium 8 8 8	232 Thorium 0
1 1 1 7 9 1 1 1 1 1 1 1 1 23 24 Sodum Magnesium Sodum 12 39 40 4 A 9 33 40 45 7 39 9 23 23 24 9 38 9 8 8 8 8 8 133 137 133 137 133 137 133 137 133 137 133 137 133 137 133 137 133 137 133 137 133 137 133 138 133 138 133 138 133 138 133 138 134 139 135 138 136 139 137 139 138 139 139 131 130 <td></td> <td></td> <td></td> <td></td> <td></td> <td>48 48 Titanium 2</td> <td>91 Zirconium 0</td> <td>178 Hafnium 2</td> <td></td> <td>ىبى</td> <td>mass number</td>						48 48 Titanium 2	91 Zirconium 0	178 Hafnium 2		ىبى	mass number
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 23 23 23 24 Nagnesum Magnesum 1 12 39 40 9 38 8 8 9 8 10 103 10 103 10 103 10 103 10 103 10 103 10 103 10 103 10<						45 Scandium 1	89 ≻ muintity €	139 Lanthanum 7 * 7	227 Actinium	eries ies	elative atomic itomic symbo oton (atomic)
Peterssium 22 23 23 23 23 23 23 23 23 23 23 23 23		=		9 Beryllium	24 Mg Magnesium	Calcium 2	88 88 Strontium 33	137 Barium 5	226 Radium 8	thanoid s tinoid ser	a = r¢ b = p1
		_		7 Lithium 4	Sodium 23	39 Botassium	85 Rb Rubidium ³⁶	133 Caesium 56	Francium 86	8-71 Lan 0-103 Ac	ey d