www.papacambridge.com MARK SCHEME for the October/November 2013 series

0653 COMBINED SCIENCE

0653/33

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	e 2			Mark Sch	eme	Syll	abus 🔪	Par l
			IGCSE	– October/N	ovember 2013	06	53	Can I
(a) ((i)	A to cell B to cell	membrane wall / large	; vacuole ;				1010
(i	ii)	functions partially has large increase	are uptake permeable surface ar s (rate of) u	e of water and membrane a rea ; iptake (of wa	d mineral ions ; llows (water to e ter / mineral ions	nter) by osmos	is ;	[max 3]
(b) ((i)	water mo through z reference description veins con	oved up thro kylem vesse e to transpir on of transp ntain xylem	ough the ster els ; ration ; piration ; vessels ;	n / stalk ;			[max 2
(i	ii)	slower ra water pu ref. to de particles	ate of transp lled up xyle crease in ra / water mol	biration ; m / stem / sta ate of evapor lecules, have	alk more slowly ; ation / diffusion, less <u>kinetic</u> ene	at lower tempe rgy / move moi	erature ; re slowly ;	[max 3]
								[Total: 10]
(a) t k	two both	of oxyge element	n sulfur fluo s are non-n	orine ; netals / implio	cation of non-me	tallic character	· •	[2]
(b) <u>F</u> ۲ 2	<u>PH</u> ₃ hydi ator so ti	; / <u>H₃P</u> ; rogen ato ns share hat each	ms have el (pairs) of el has filled sh	ectron config lectrons ; nells ;	uration of 1;			
((cor	rect bond	ling diagran	n scores max	2 of last three p	oints)		[max 3]
(c) b (bari (all∶	um, magi 3 for 2 ma	nesium, chle arks any 2	oride,(allow h for 1 mark m	nydrogen) ;; nax 1 if sulfate si	uggested)		[2]
(d) (t F	Q hydi P;	rogen						
	Q n	nore read	tive than H	because abl	e to remove oxy	gen from it / ow	/tte;	[3]
(F	P le	ss reactiv	e than H si	nce unable to	J Separate Oxyge		.е,	[J

Page	3	Mark Scheme Sy	llabus 23
		IGCSE – October/November 2013	0653
(a) de de	ecreas ecreas	ses ; ses ;	7brie
(b) le di	ngth ; amete	er;	[2]
(c) (i)) (po = 3	wer =) voltage x current ; 3 × 0.6 = 1.8W ;	[2]
(ii)) wor = 4	rk = force × distance and power = work/time ; 0 × 1.2/36 ;	
	1.3	3W ;	[3]
(iii)) ene	ergy lost (as heat /sound) ;	[1]
(iv)) effic 73.3	ciency = 1.33/1.8 × 100 ; 88% / 0.74 ;	[2]
			[Total: 11]
(a) (i) bac	steria / Lactobacillus / Streptococcus ;	[1]
(ii)) to s mic ref.	speed up the production of yoghurt ; proorganisms work faster / better (at higher temperature) ; to optimum temperature for enzymes ;	[max 2]
(b) (i) incr use des e.g.	reased ; e of data e.g. from 0.15% to 0.31% / by 0.16% ; cription of the variation in rate . rate of increase slowed after 6 hours ;	[max 2]
(ii)) ado rate (mie mol	led sugar increases the amount of lactic acid / fermentation e of reaction / use of data to illustrate this ; croorganisms) convert sugar to lactic acid ; re sugar increases rate of production of lactic acid ;	ו / [max2]
(c) ar sp du	rea too becies ue to r	o small to support populations / reduction in biodiversity / ex become endangered / lack of opportunity to find new medi eduction of habitat ;	cines ;
flc du	ooding ue to r	/ leaching of minerals ; ain falling directly on soil / lack of protection of tree canopy	/ increased runoff ;
sc di	oil eros ue to la	sion ; ack of tree roots ;	
dr dı	ought	; ack of transpiration by trees to form rain (leading to deserti	fication) ·

			MMM. D
	Page 4	Mark Scheme S	yllabus 23
		IGCSE – October/November 2013	0653
	CC due als car gas	² levels in the atmosphere increase ; to fewer trees to photosynthesise/ less photosynthesis to rem due to burning trees produce CO ₂ / rotting trees produce CO ₂ con dioxide traps long-wave radiation / infra-red / heat / therm	ove carbon dioxide ; ² by respiration of microbe nal energy /is a greenhouse
	red	uces rate of loss of heat from the Earth's surface / increases g	lobal warming ;
			[Total: 11]
5	(a) pas goe	s gas into limewater ; s cloudy / milky / precipitate forms ;	[2]
	(b) (i)	the greater the acid concentration the higher the rate ; ref. to direct proportionality ;	[2]
	(ii)	ref. to reaction occurring as the result of particle collisions / ref. to the identity of colliding particles ; higher concentration means higher frequency of collision ;	[2]
	(iii)	temperature affects rate of reaction ; so control needed so rate investigation data is valid / ref. to fa additional collision theory detail related to rate ;	ir test ; [max 2]

[4]

(ii) wave speed;

[1]

Pa	ge 5	Mark Sc	heme	Syllabus	1Day
		IGCSE – October/	November 2013	0653	an.
(b)	way refe ang no	ves are reflected along fibre ; erence to total internal (reflection le (of incidence) is greater than ight escapes ;) ; critical angle ;		[max 2]
(c)	(i)	two rays reflected at the mirror correct by inspection ;	entering the eye with an	gles	[1]
	(ii)	two construction lines drawn ba X labelled in correct position by	ick from the mirror locati inspection ;	ng X ;	[2]
					[Total: 10]
(a)	(i)	A trachea ; B lung ;			[2]
(b)	(i)	(net) movement of molecules ; from region of high concentration down a concentration gradient	on to low concentration /		[2]
	(ii)	more energy used / more musc reference to (more / faster) resp so more carbon dioxide produc so greater diffusion gradient (fro	le contraction ; piration ; ed (in cells) ; om cells to blood) ;		[max 3]
					[Total: 7]
(a)	(i)	C ₈ H ₁₈ ;			[1]
	(ii)	it is a <u>hydrocarbon</u> containing o / it conforms to the general for	nly single bonds / a satu nula C _n H _{2n+2} ;	ırated <u>hydrocarbon</u>	[1]
(b)	mo so a so l	ecules in gasoline (on average) attractive forces between molecu ess energy needed to separate	are smaller / lighter ; ıles in gasoline are lowe molecules (in gasoline) ;	r;	
	SO a	are less entangled (than in diese	l);		[max 2]
(c)	(i)	orange solution becomes colou	rless ;		[1]
	(ii)	addition ;			[1]
	(iii)	$C_2H_4 + 3O_2 \rightarrow 2CO_2 +$ (LHS formulae; RHS formulae;	2H ₂ O ;;; then balanced)		[3]
			,		[Total: 0]

Page 6	Mark Scheme	Syllabus
rage u	IGCSE – October/November 2013	0653
(ii) not n	< 400 × 5 × 5 = 5000J ; noving ;	
b) heat trans golfer's h	sferred from hands / body to sweat / heat absorbo ands / body/heat energy in hands / body reduced	ed by sweat from I by sweating ;
kinetic en	ergy of water molecules increases / water molec	ules move faster ;
faster mo water (sw	ving / more energetic (water) molecules escape / eat) molecules turn to gas/vapour ;	/ leave the surface /
ref. to bre	ak bonds /break forces of attraction between mo	lecules ;

(KE) / energy of (remaining) water molecules (in sweat) decreases ;

[max 2]