

MARK SCHEME for the May/June 2014 series

0653 COMBINED SCIENCE

0653/62

Paper 6 (Alternative to Practical), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Pag	je 2		/llabus
		IGCSE – May/June 2014	0653
(a) ((pur	rple due to) pH above 8/alkaline (conditions) ;	ambri
	128 72 s	nding for time taken with units (allow units in table) ; es for block A ; s for block B ; ow reference to dimensions or letter or volume to identify blocks	vilabus 0653 s)
(c)	(i)	diffusion ; (NOT osmosis)	[1]
(ii)	reduces pH/takes pH below 8 (so it goes colourless) ;	[1]
(d)	(i)	(B quicker as) smaller distance/volume/size/surface area/ot	her correct ; [1]
(ii)	alveoli (walls)/lungs/capillaries one cell thick/large surface shorter path(way);	ce (area)/thin/ [1]
(e)	(i)	different sized blocks/greater range of block sizes ;	[1]
(ii)	<i>on either axis</i> : <u>time</u> and volume/(surface) area/dimensions/size ; (ignore line drawn)	units, and any [1]
			[Total: 10]
(a)	(i)	carbonate / CO_3^{2-} ;	[1]
(ii)	either order: (aqueous) silver nitrate/AgNO ₃ /lead nitrate/Pb(NO ₃) ₂ ; nitric acid/HNO ₃ ;	[2]
(i	ii)	exothermic ;	[1]
(b)	(i)	copper/Cu ²⁺ ; iron(II)/Fe ²⁺ ;	[2]
(ii)	filtration diagram must <u>see</u> both funnel and paper ; two relevant labels ;	[2]
(i	ii)	darkens/(turns) brown ; oxidation ;	[2]
			L

						4333		
\square	Page 3		Ма	rk Scheme		Syllabus	e r	
				- May/June 2014	4	0653	Ba	
3	(a) (i)	0.14(A); 1.3 <u>0</u> (V);					Cannet in	
	(ii)	0.38 0.29 0.23 0.18 (ecf) 0.15 ;;					Papacambridge.com	R
	(iii)	(lamp is) l	less bright/dimm	ier;			[1]	l
	(b) (i)	0.18 (0.1 0.09 (0.0 0.04 (0.0 0.02 (0.0 0.01 (0.0 (all correct	86) 38) 22) 15) ;;	e error = 1 mark	BUT max 1 if	any rounding error)	[2]	
	(ii)	-	ne, positive slope nrough origin ;	€;			[2]	
	(iii)	disagree $\frac{V}{l}$ not co	(no mark) nstant/as length	/ <i>l</i> increases, V	decreases ;		[1]	
							[Total: 10]	
4		cess – <u>ispiration ;</u> Ianation –					[1]	
	eva	poration of	f water (at meso /apour from leav		nata)/water <u>gi</u>	<u>ven</u> off by leaves ;	[1]	
	reco timi	ord start/e ng/use of	ring wind speed of nd distance ; a stopclock; than one experi		ın ;			
	othe	er (or one)		tant e.g. same p	lant, plant size	e, temp, light (lookin	g [max 4]	
	(c) (i)		rom left, right or or 3.5) at end ;	middle of bubbl	e (1.0, 1.5 or	2.0 at start) to mate	ch [1]	
	(ii)	4.5 (high) 1.5 (low) ;					[2]	
	hun	vironmenta nidity ; er availabi						
		ifall ;	, , , , , , , , , , , , , , , , , , ,				[max 1]	
							[Total: 10]	

IGCSE - May/June 2014 0653 note: for part (a) and part (b)(i) allow letter or name (a) add A to B will produce/gas/bubbles/CO ₂ therefore C is BaCl ₂ ; add B to C will produce(white) ppt therefore B is Na ₂ CO ₃ ; therefore A must be HC <i>l</i> ; (or any other way) (b) (i) A and B (either order) or names; (ii) evaporation; (iii) diagram; (allow a 'series' of diagrams to show evaporation in a beaker) two relevant labels; (c) use of sodium hydroxide (aq) and/or (aq) ammonia; white ppt; dissolves in excess/(solution) turns colourless; (if WRONG reagent, maximum mark 1 for white ppt) (a) (i) 4.5; (ii) 3600; (iii) 4.5 × 12 × 3600 (ecf); 194400; (b) (i) 83°C; 63°C (ecf); (ii) 0.5 (× 4200 × 63 (ecf)); 132 300(J);	1) (1) (2)
 (b) (i) A and B (either order) or names; (ii) evaporation; (iii) diagram; (allow a 'series' of diagrams to show evaporation in a beaker) two relevant labels; (c) use of sodium hydroxide (aq) and/or (aq) ammonia; white ppt; dissolves in excess/(solution) turns colourless; (if WRONG reagent, maximum mark 1 for white ppt) (a) (i) 4.5; (ii) 3600; (iii) 4.5 × 12 × 3600 (ecf); 194400; (b) (i) 83 °C; 63 °C (ecf); (ii) 0.5 (× 4200 × 63 (ecf)); 	[1] [1]
 (b) (i) A and B (either order) or names; (ii) evaporation; (iii) diagram; (allow a 'series' of diagrams to show evaporation in a beaker) two relevant labels; (c) use of sodium hydroxide (aq) and/or (aq) ammonia; white ppt; dissolves in excess/(solution) turns colourless; (if WRONG reagent, maximum mark 1 for white ppt) (a) (i) 4.5; (ii) 3600; (iii) 4.5 × 12 × 3600 (ecf); 194400; (b) (i) 83 °C; 63 °C (ecf); (ii) 0.5 (× 4200 × 63 (ecf)); 	[1] [1]
 (ii) evaporation; (iii) diagram; (allow a 'series' of diagrams to show evaporation in a beaker) two relevant labels; (c) use of sodium hydroxide (aq) and / or (aq) ammo<u>nia</u>; white ppt; dissolves in excess / (solution) turns colourless; (if WRONG reagent, maximum mark 1 for white ppt) (a) (i) 4.5; (ii) 3600; (iii) 4.5 × 12 × 3600 (ecf); 194400; (b) (i) 83 °C; 63 °C (ecf); (ii) 0.5 (× 4200 × 63 (ecf)); 	[1]
 (iii) diagram; (allow a 'series' of diagrams to show evaporation in a beaker) two relevant labels; (c) use of sodium hydroxide (aq) and/or (aq) ammo<u>nia</u>; white ppt; dissolves in excess/(solution) turns colourless; (if WRONG reagent, maximum mark 1 for white ppt) (a) (i) 4.5; (ii) 3600; (iii) 4.5 × 12 × 3600 (ecf); 194400; (b) (i) 83 °C; 63 °C (ecf); (iii) 0.5 (× 4200 × 63 (ecf)); 	
 two relevant labels ; (c) use of sodium hydroxide (aq) and/or (aq) ammo<u>nia</u>; white ppt; dissolves in excess/(solution) turns colourless; (if WRONG reagent, maximum mark 1 for white ppt) (a) (i) 4.5; (ii) 3600; (iii) 4.5 × 12 × 3600 (ecf); 194400; (b) (i) 83 °C; 63 °C (ecf); (ii) 0.5 (× 4200 × 63 (ecf)); 	[2]
 white ppt ; dissolves in excess / (solution) turns colourless ; (if WRONG reagent, maximum mark 1 for white ppt) (a) (i) 4.5 ; (ii) 3600 ; (iii) 4.5 × 12 × 3600 (ecf) ; 194400 ; (b) (i) 83 °C ; 63 °C (ecf) ; (ii) 0.5 (× 4200 × 63 (ecf)) ; 	
(ii) 3600 ; (iii) $4.5 \times 12 \times 3600$ (ecf); 194400; (b) (i) $83 ^{\circ}C$; $63 ^{\circ}C$ (ecf); (ii) $0.5 (\times 4200 \times 63$ (ecf));	[3]
(ii) 3600 ; (iii) $4.5 \times 12 \times 3600$ (ecf); 194400; (b) (i) $83 ^{\circ}C$; $63 ^{\circ}C$ (ecf); (ii) $0.5 (\times 4200 \times 63$ (ecf));	[Total: 10]
(iii) $4.5 \times 12 \times 3600$ (ecf); 194400; (b) (i) $83^{\circ}C$; $63^{\circ}C$ (ecf); (ii) $0.5 (\times 4200 \times 63$ (ecf));	[1]
(b) (i) $83 ^{\circ}C$; $63 ^{\circ}C (ecf)$; (ii) $0.5 (\times 4200 \times 63 (ecf))$;	[1]
63 °C (ecf) ; (ii) 0.5 (× 4200 × 63 (ecf)) ;	[2]
	[2]
	[2]
(c) efficiency = $\frac{\text{useful (energy) out}}{\text{total (energy) in}}$ (× 100 %);	
$\frac{132300}{194400} = 68\% \;(\text{ecf})\;;$	
	[2]