www.papacambridge.com MARK SCHEME for the October/November 2014 series

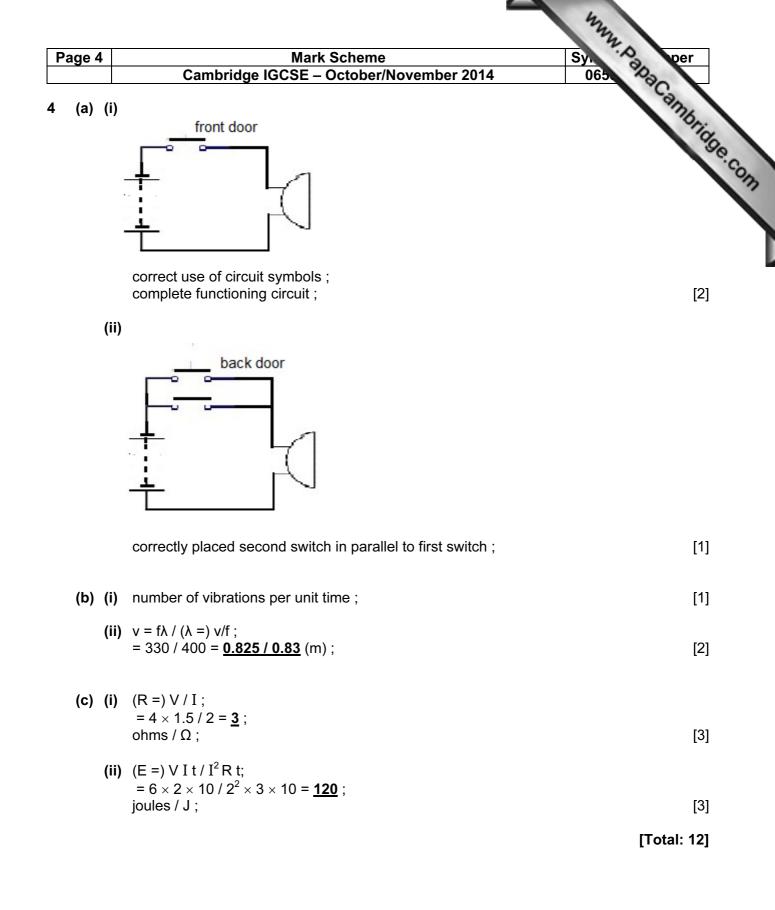
0653 COMBINED SCIENCE

0653/32

Paper 3 (Extended Theory), maximum raw mark 80

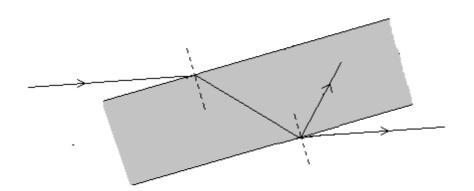
This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

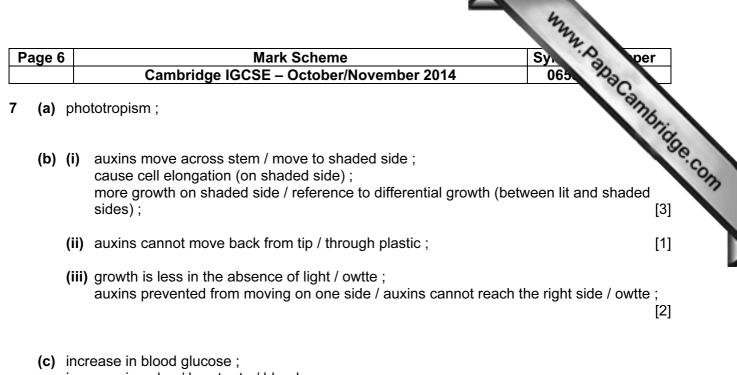

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.


age 2	Mark Scheme Sy.	oer oer
	Cambridge IGCSE – October/November 2014 065	10an
(a)	iron oxide	W. papacambride
	carbon	10m
	oxygen	19
	calcium carbonate ;;	
	(1 mark for 2 or 3 correct, 2 marks for 4 correct)	[2]
(b)	(i) carbon dioxide ;	[1]
	(ii) iron (oxide loses oxygen) and is reduced ;	
	carbon (monoxide gains oxygen) and is oxidised ; (allow correct reference to electron transfer)	[2]
	(iii) carbon dioxide is a greenhouse gas / <u>increases</u> the greenhouse effect /	
	reference to global warming ;	
	description of how greenhouse effect operates ;	
	the idea that climates could change / example of one consequence of clin	•
		[max 2]
(c)	(i) brown / pink / copper (coloured) deposit ;	
	blue colour fades / becomes greener ;	
	temperature increase / change ;	[max 2]
	(ii) copper ions become atoms ;	
	iron atoms became ions ; (reaction occurs) because iron higher in reactivity series than copper ;	[max 2]
		[Total: 11]

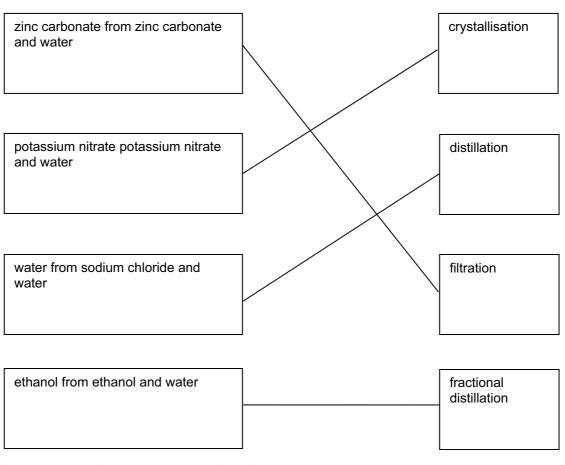
		m	
P	age 3	Mark Scheme Sy	o per
-	age (Cambridge IGCSE – October/November 2014 065	200
2	(a)	135 km / hr = 135 000 m / hr ; 135 000 m / hr = 135 000 / 60 × 60 m / s = <u>37.5</u> (m / s) ;	Dapa Cambridge.com
	(b)		"Com
st	beed	1	
	(c)	 reference to acceleration occurring (in this stage)/acceleration requires a re unbalanced (driving) force ; (ii) <u>chemical</u> (potential) energy in the rider ; 	[3]
		kinetic energy of the bicycle and rider ; heat / thermal / sound energy during braking ; (2 marks for 3 correct, 1 mark for 2 correct)	[max 2] [Total: 8]
3	(a)	<pre>A trachea ; B bronchiole ;</pre>	[2]
	(b)	large surface (area) ; thin cells in alveoli (and blood capillaries) ; good blood supply ;	[max 2]
	(c)	(i) 0.5 (dm ³); 42 (dm ³);	[2]
		 (ii) faster rate of respiration ; for muscle contraction ; more oxygen needed / oxygen needed more quickly ; need to get rid of more carbon dioxide / 	
		need to get rid of more carbon dioxide / need to remove carbon dioxide more quickly ;	[max 3]
			[Total: 9]


Page 5		Mark Scheme Sy.		Syl Syl per	
		Mark SchemeSyleCambridge IGCSE – October/November 2014065			
(a	a) (i)			8m	
			in nucleus	outside nucleus	
		number of protons	14	2014 Syl of the contract of th	
		number of neutrons	14	0 / blank	
		number of electrons	0 / blank	14	
	(ii)	1 mark for each column ;;			
(b		4 ; number of electrons in ou			
(b		4;	ter shell shown by group rith symbols ;		
(b	b) (i)	 4 ; number of electrons in our 4 shared pairs ; atoms correctly labelled w 	ter shell shown by group ⁄ith symbols ; ectrons ≠ 8)	number / owtte ;	
(b	b) (i)	4 ; number of electrons in our 4 shared pairs ; atoms correctly labelled w (max 1 mark if valence electron $CH_4 + 2O_2 \rightarrow CO_2 + 2 H_2$ all correct formulae ;	ter shell shown by group ⁄ith symbols ; ectrons ≠ 8)	number / owtte ;	
	b) (i)	4 ; number of electrons in our 4 shared pairs ; atoms correctly labelled w (max 1 mark if valence electron $CH_4 + 2O_2 \rightarrow CO_2 + 2 H_2$ all correct formulae ; then correctly balanced ;	ter shell shown by group ⁄ith symbols ; ectrons ≠ 8)	o number / owtte ;	

- (b) molecules / particles move faster / gain more (kinetic) energy ; faster /more energetic molecules escape (from liquid) / evaporate ;
 [2]
- (c)

refracted emergent ray bent away from normal ; angle of reflection equal to angle of incidence (by inspection) ; emergent ray parallel to original incident ray (by inspection) ;

[3]



increase in pulse / heart rate / blood pressure ; for increased metabolic activity / rate of respiration ;

[max 2]

[Total: 9]

8 (a)

all correct 2 marks, 3 or 2 correct 1 mark ;;

[2]

age 7	Mark Scheme Syn	per
	Cambridge IGCSE – October/November 2014 065	
(b) (i)	Mark SchemeSy.Cambridge IGCSE – October/November 2014065(marks may be awarded from a combination of words with a clear diagram) solutions spotted on / added to (chromatography) paper / the line / origin ; paper suspended in water / solvent with spots above the solvent ; spots move up the paper (with the water/solvent) / reference to distance moved related to solubility ;	ambride [3]
(ii) A and C ;	[1]
(ii	i) both produce spots at same position as dye X / owtte ;	[1]
	[т	otal: 7]
(a) (i)	burning / combustion of (fossil) fuels / burning material that produces sulfur / nitrogoxides ;	gen [1]
(ii) acid gases carried by the wind ; react with / dissolve in (rain) water (to form acid rain) ; (acid) rain falls on land/river / drains into river ;	[max 2]
(b) (i)	variation in amount and location of rainfall ; variation in factory working / energy requirements ; variation in wind speed and direction ;	[max 2]
(ii)3; all animals needing a higher pH than 4.5 would not survive;	[2]
	i) enzymes will not function as well / will not be at optimum ;	
(ii	enzymes may be denatured / simple description of denaturation in terms of molec shape change ;	ular [2]