

www.papaCambridge.com

JUNE 2003

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 0654/01

CO-ORDINATED SCIENCES Paper 1 (Multiple Choice) Page 1 Mark Scheme IGCSE EXAMINATIONS – JUNE 2003

ge 1	IG	Mark Sch CSE EXAMINATIOI	eme NS – JUNE 2003	Syllabo 0654	apacam
	Question Number	Key	Question Number	Syllaba 0654 Key	oridge.
	1	D	21	D	
	2	D	22	Α	
	3	В	23	В	
	4	С	24	С	
	5	В	25	Α	
	6	В	26	Α	
	7	В	27	D	
	8	D	28	Α	
	9	В	29	С	
	10	Α	30	D	
_					
	11	D	31	D	
	12	D	32	Α	
	13	В	33	D	
	14	С	34	D	
	15	С	35	В	
	16	A	36	A	
	17	С	37	A	
	18	В	38	В	
	19	В	39	Α	
	20	Α	40	D	

TOTAL 40

JUNE 2003

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 100

SYLLABUS/COMPONENT: 0654/02

CO-ORDINATED SCIENCES (DOUBLE AWARD) Paper 2 (Core)

1 Mark Scheme Syllabit rbc) has no nucleus; idit of the second state of the
plant cell) has cell wall; plant cell) has chloroplasts; plant cell) has (sap/large) vacuole; max 2 defend against infections/kill bacteria/kill viruses; max 2 defend against infections/kill bacteria/kill viruses; defend against infections/kill bacteria/kill viruses; distatement describing evaporation - e.g. faster moving particles have enough energy to escape and leave the iquid; overcome forces of attraction; nore particles will have this energy on a warm day; defender bacter vibration increases; distance between particles increases; distance between particles increases; vibration passed on to neighbouring particles. 2
plant cell) has cell wall; plant cell) has chloroplasts; plant cell) has (sap/large) vacuole; max 2 defend against infections/kill bacteria/kill viruses; max 2 defend against infections/kill bacteria/kill viruses; defend against infections/kill bacteria/kill viruses; distatement describing evaporation - e.g. faster moving particles have enough energy to escape and leave the iquid; overcome forces of attraction; nore particles will have this energy on a warm day; defender bacter vibration increases; distance between particles increases; distance between particles increases; vibration passed on to neighbouring particles. 2
plant cell) has cell wall; plant cell) has chloroplasts; plant cell) has (sap/large) vacuole; max 2 defend against infections/kill bacteria/kill viruses; max 2 defend against infections/kill bacteria/kill viruses; defend against infections/kill bacteria/kill viruses; distatement describing evaporation - e.g. faster moving particles have enough energy to escape and leave the iquid; overcome forces of attraction; nore particles will have this energy on a warm day; defender bacter vibration increases; distance between particles increases; distance between particles increases; vibration passed on to neighbouring particles. 2
plant cell) has cell wall; plant cell) has chloroplasts; plant cell) has (sap/large) vacuole; max 2 defend against infections/kill bacteria/kill viruses; max 2 defend against infections/kill bacteria/kill viruses; defend against infections/kill bacteria/kill viruses; distatement describing evaporation - e.g. faster moving particles have enough energy to escape and leave the iquid; overcome forces of attraction; nore particles will have this energy on a warm day; defender bacter vibration increases; distance between particles increases; distance between particles increases; vibration passed on to neighbouring particles. 2
plant cell) has chloroplasts; plant cell) has (sap/large) vacuole; max 2 defend against infections/kill bacteria/kill viruses; HIV; for the sexual intercourse; sharing needles/blood to blood; mother to baby. max 2 Total 8 ma statement describing evaporation - e.g. faster moving particles have enough energy to escape and leave the iquid; overcome forces of attraction; more particles will have this energy on a warm day; for each of the second secon
plant cell) has (sap/large) vacuole; max 2 defend against infections/kill bacteria/kill viruses; HIV; sexual intercourse; sharing needles/blood to blood; nother to baby. max 2 Total 8 ma statement describing evaporation - e.g. faster moving particles have enough energy to escape and leave the iquid; overcome forces of attraction; nore particles will have this energy on a warm day; particles gain energy; amount of vibration increases; distance between particles increases; distance between particles increases; distance between particles increases; vibration passed on to neighbouring particles. 2
defend against infections/kill bacteria/kill viruses; HIV; sexual intercourse; sharing needles/blood to blood; nother to baby. Total 8 ma statement describing evaporation - e.g. faster moving particles have enough energy to escape and leave the iquid; overcome forces of attraction; nore particles will have this energy on a warm day; particles gain energy; amount of vibration increases; distance between particles increases; distance between particles increases; distance being heated vibrate more; <i>v</i> ibration passed on to neighbouring particles. 2
HIV; sexual intercourse; sharing needles/blood to blood; nother to baby. max 2 Total 8 ma statement describing evaporation - e.g. faster moving particles have enough energy to escape and leave the iquid; overcome forces of attraction; more particles will have this energy on a warm day; particles gain energy; amount of vibration increases; distance between particles increases; distance between particles increases; distance between particles increases; distance between particles increases; distance between on to neighbouring particles. 2
sexual intercourse; sharing needles/blood to blood; mother to baby. max 2 Total 8 ma statement describing evaporation - e.g. faster moving particles have enough energy to escape and leave the iquid; overcome forces of attraction; more particles will have this energy on a warm day; amount of vibration increases; distance between particles increases; oparticles being heated vibrate more; vibration passed on to neighbouring particles. 2
sharing needles/blood to blood; mother to baby. max 2 Total 8 ma statement describing evaporation - e.g. faster moving particles have enough energy to escape and leave the iquid; overcome forces of attraction; more particles will have this energy on a warm day; 3 particles gain energy; amount of vibration increases; distance between particles increases; 3 particles being heated vibrate more; vibration passed on to neighbouring particles. 2
mother to baby. max 2 Total 8 ma statement describing evaporation - e.g. faster moving particles have enough energy to escape and leave the iquid; overcome forces of attraction; more particles will have this energy on a warm day; particles gain energy; amount of vibration increases; distance between particles increases; distance between particles increases; particles being heated vibrate more; vibration passed on to neighbouring particles. 2
Total 8 ma statement describing evaporation - e.g. faster moving particles have enough energy to escape and leave the iquid; overcome forces of attraction; more particles will have this energy on a warm day; particles gain energy; amount of vibration increases; distance between particles increases; particles being heated vibrate more; vibration passed on to neighbouring particles.
statement describing evaporation - e.g. faster moving particles have enough energy to escape and leave the iquid; overcome forces of attraction; more particles will have this energy on a warm day; particles gain energy; amount of vibration increases; distance between particles increases; distance between particles increases; particles being heated vibrate more; vibration passed on to neighbouring particles.
 a.g. faster moving particles have enough energy to escape and leave the iquid; by ercome forces of attraction; more particles will have this energy on a warm day; barticles gain energy; amount of vibration increases; distance between particles increases; barticles being heated vibrate more; vibration passed on to neighbouring particles.
more particles will have this energy on a warm day; 3 particles gain energy; 3 amount of vibration increases; 3 distance between particles increases; 3 particles being heated vibrate more; 3 vibration passed on to neighbouring particles. 2
amount of vibration increases; distance between particles increases; particles being heated vibrate more; vibration passed on to neighbouring particles.
distance between particles increases; 3 particles being heated vibrate more; vibration passed on to neighbouring particles. 2
vibration passed on to neighbouring particles.
vibration passed on to neighbouring particles.
Total 8 ma
Α;
reference to only one type of atom;
potassium bromide;
o make it into an electrolyte/so that it conducts an electric current;
salt X must be broken down; ons must be free to move; max 2
netals always form at the same electrode/at the cathode; potassium ions are positive; max 2
giant metallic simple molecular giant ionic 3
Total 9 ma

Total 9 marks

Page	2	Mark Scheme		Syllabu	S.
		AMINATIONS – JUNE	2003	0654	No.
ro	reptiles have scaly skin/a reptiles may live entirely reptiles have shelled egg amphibians have tadpole	on land/amphibians i s/amphibian eggs ha	reproduce in v ave no shell;	vater;	max 2
(b) (i) g	J <u>G</u> ;				1
(ii) G	ЭG;				1
g	ohenotypes of parents genotypes of parents gametes produced	green Gg G and g	green; Gg G and	-	3
-	genotypes of offspring	GG Gg	Gg	gg ;	
(iv) 3	3:1.				1
				Tota	ll 8 marks
· / •	goes faster for given force ess wear and tear, etc.;	e/better acceleration	/less fuel used	d;	2
(b) (i) 2	20 000 N;				1
(ii) 2	20 000N;				1
(c) (i) 2	20m/s;				1
(ii) 4	40s;				1
(iii) 1	100s;				1
(iv) 2	20/40; D.5m/s ² ;				2
	<i></i>			Tota	z Il 9 marks
- <i>·</i> · ·	· • / \			1010	
	made from (once) living c formed over a very long t				2
(b) (i) Y X	Y X				
Z	Z				1
(ii) t'	he larger the molecules t	the higher the boiling	j point;		1
(iii) ((fractional) distillation;				1
(iv) A	Α;				1
a	saturated - only single bo amount of hydrogen per i	molecule;			
	unsaturated - has double contain maximum amoun			/does not	2
				- ·	9 marks

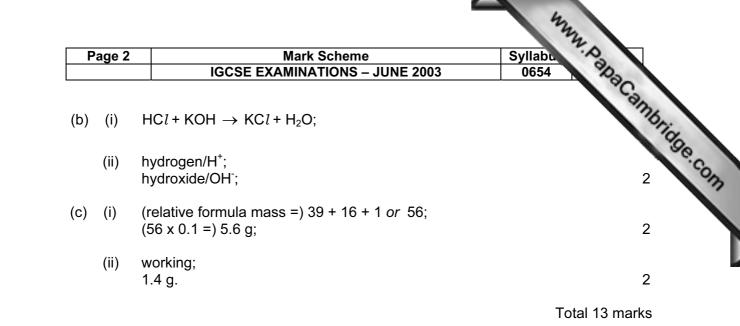
Total 8 marks

Paç	ge 3		llabu 🔗
		IGCSE EXAMINATIONS – JUNE 2003 0	0654 7330
7 (a)		ht could enter/light needed; otosynthesis;	Mabu 0654 2 nt; max 2
(b)	•	synthesis happens (only) during daytime/when light preser	nt;
	•	ces oxygen; en falls in darkness because respiration happening;	max 2
(c)		with peak in centre; r lower levels at either end;	2
(d) (i)		nism which) produces food/produces organic substances inorganic);	1
(ii		g/feeding (on plants); y is in carbohydrates/other named organic molecule.	2
			Total 9 marks
8 (a) (i	i)iron/c	obalt/nickel;	1
(ii) interfe	ere with electromagnets/tape etc.;	1
(iii)		ical; etic/sound; kinetic to sound for two marks	2
(iv)			2
(17)	,	around magnetic where the influence of the magnet can tected;	1
(b) (i)) wavel	ength correctly shown;	1
(ii)		drawn with half amplitude; ame wavelength;	2
(iii)		er (no mark) tude of wave controls loudness.	1
			Total 9 marks
9 (a) (i	i)chem	otherapy;	1
(ii)) analge	esic;	1
(b)	4;		1
(c) (i	i)117;		1
(ii)) caesiı	um;	1
(iii)		um may have coloured compounds/catalytic activity/more t cy/be less reactive;	than one
		allow answer in terms of melting points, boiling points and o	density 1

Pag	e 4	Mark Scheme	Syllabu
		IGCSE EXAMINATIONS – JUNE 2003	0654
(d)	high dive	ugs are developed from chemicals found in plants/O ersity of plants in rainforest; of finding new drugs may be lost or reduced/OWTTE	
			Total 8 ma
0 (a)	add biure purple;	et solution/potassium hydroxide and copper sulphate	
(b)	to amino absorbed in small i into villi/l	e (breaks proteins down); acids; d intestine/ileum;	max 3
(c) (i)	liver;		1
• • •	transport to kidney excreted in urine.		max 2 Total 8 m
			TOLAT & IT
1 (a)		s are charged; s are negative;	2
(b)	correct s in paralle		2
(c)	length/cr	ross section/temperature/metal it is made from;	2
(d)	200 Ω.		1
			Total 7 ma
2 (a) (i) carbon	hydrogen oxygen (2 marks for all three, 1 mark for t	wo); 2
(ii)	idea of s	ymbols joined in a chain;	1
• •		e/chain molecule; repeating units/smaller molecules/monomers which ;	have joined 2
(b)		r with labelled limewater; tube entering limewater;	2
(c)	liquid liqu solid liqu		2
	2		Total 9 ma

JUNE 2003

INTERNATIONAL GCSE


MARKING SCHEME

MAXIMUM MARK: 110

SYLLABUS/COMPONENT: 0654/03

CO-ORDINATED SCIENCES (DOUBLE AWARD) Paper 3 (Extended)

Page 1		yllabu 🔗
	IGCSE EXAMINATIONS – JUNE 2003	0654
1 (a) (i)	label M to anther; label D to stigma;	yllabu 0654 Abacannu 2 max 2
(ii)	petals; anthers, inside petals/enclosed; stigma, inside petals/enclosed/not feathery;	max 2
(iii)	pollination is the transfer of pollen; from an anther to a stigma; fertilisation is the fusion of (male and female) gametes/nucle inside an ovule;	ei/cells; not pollen max 3
(b) (i)	structure of fruit described (e.g. fleshy, sweet, has hooks); how this helps dispersal by animals (e.g. egested in faeces removed from fur in different place);	in different place, 2
(ii)	allows colonisation of new areas; reduces competition (between new plants/between parent p reduces threat from localised disaster; reduces chance of breeding with close relation and hence in	,
		Total 11 marks
2 (a) (i)	130 dm ³ ;	1
(ii)	$P_1V_1 = P_2V_2 \text{ or } 100\ 000 \text{ x } 130 = P_2 \text{ x } 30;$ 433 333 Pa/Nm ⁻² ;	2
(iii)	ref. to possible temperature change; gas became hotter when pushed into the cylinder; higher temperature (in the same volume) increases pressur	e; max 2
(b) (i)	(gas) pressure increases when temperature increases; (this) pushes the piston/metal plate out; (which) closes the connection (and starts the alarm);	3
(ii)	P ₁ /T ₁ = P ₂ /T ₂ or 120 000/300 = 180 000/T ₂ ; 450 K.	2
		Total 10 marks
3 (a) (i)	temperature rises; when acid is added (to the alkali); heat is evolved;	max 2
(ii)	7; this is when the alkali has (just) been neutralised or max te reaction has finished;	emp. shows 2
(iii)	22.5 cm ³ ;	1

^{4 (}a) (i)

0.03 3 to 4
0.00
20 to 21 18
78 78 to 79

- (ii) water vapour/argon/other; not hydrogen 1
- to give time for breathing rate to settle down/time for carbon dioxide to (b) (i) equilibrate in the room/words to that effect; 1 (ii) echidna breathing rate does not increase as much overall (as carbon dioxide concentration increases)/vice versa; echidna breathing rate increases less at (very) high carbon dioxide concentrations/curve flattens off for echidna/vice versa; 2 (c) (i) ref. to diffusion; between blood and alveoli; more CO₂ in air/alveoli, slows down diffusion/makes gradient less steep/causes CO₂ to diffuse into blood; max 2 (ii) more carbon dioxide in blood is an indication of more respiration; (faster breathing) supplies more oxygen to tissues; (faster breathing) removes carbon dioxide rapidly; high carbon dioxide concentration in blood is dangerous; max 2 (d) atrium;
 - right; ventricle; artery.

4

Page 3	Mark Scheme Syllabu	A
	IGCSE EXAMINATIONS – JUNE 2003 0654	PD2
(a) (i)	fossil fuels running out; fossil fuel burning, releases carbon dioxide/adds to global warming/re sulphur dioxide/causes acid rain;	Panacann leases
(ii)	radiation may leak/high costs of decommisioning/high start-up costs/if disaster it is likely to be a major one/radioactive waste is difficult to de	
(iii)	needs to be in area of high winds/spoils landscape/noisy for local resi	dents; 1
(b) (i)	minimises <u>energy</u> losses; at higher voltages;	2
(ii)	substitution into equation; ratio is 1:16.	2
	То	tal 8 marks
(a)	(damp) red litmus; turns blue;	
	or	
	contact with hydrogen chloride gas; white smoke produced;	2
(b) (i)	reaction is reversible/gases not in reactor long enough/some nitrogen hydrogen do not (have time to) react/some gases miss the catalyst/or reactant may be in excess;	
(ii)	decrease/become zero; catalyst is needed to speed up the reaction/reaction would be slower;	2
(c) (i)	nitrogen is unreactive/inert;	1
(ii)	oxygen (<i>allow 'air'</i>);	
	water; rhodium/platinum/vanadium (catalyst);	max 2
(d)	(dilute) sulphuric acid; mix reagents until neutral; ref. to method of deciding neutrality; heat mixture to evaporate some of the water;	
	noar mixture to evaporate some of the water,	

Total 12 marks

Page 4	Mark Scheme	Syllabu A	
	IGCSE EXAMINATIONS – JUNE 2003	0654	
		.6	m.
7 (a)	plants need, nitrogen/nitrate/ammonium, to make proteins soil may be short of nitrogen/nitrate/ammonium; adding fertiliser <u>increases</u> growth/yield;	Syllaba 0654 s/amino acids; max	1011 2
(b) (i)	by diffusion/active transport;		
	into root;		
	(root) hairs;	max	(2
(ii)	xylem;		1
(c) (i)	increase at the point where fertilisers enter the river; fall downstream as fertiliser is used up/diluted/dispersed;		2
(ii)	bacteria increase as they feed on (dead) algae; bacteria respire;		
	bacteria use oxygen;		
	oxygen curve falls as bacteria curve rises/vice versa;		
	fish need oxygen for respiration; fish die/move away, when oxygen level falls.	Мах	ά
		Total 11 ma	rks

8 (a) (i)

Result	Switch A	Switch B	Switch C	Switch D
cold, slow	on	off	on	off
hot, slow	on	off	on	on
cold, quickly	off	on	on	off
hot, quickly	off	on	on	on

3

(ii)	greater resistance but same voltage (in circuit)/smaller voltage drop across motor; less current passes through motor/motor receives less energy;	2
(iii)	240 V;	1
(iv)	1 V is 1 J per coulomb/energy = voltage x charge plus explanation;	1
(b)	energy = shc x temperature change x mass; <i>must be stated fully</i> = 4200 x 50 x 2; 420 000 J/420 kJ.	3

Page 5	Mark Scheme Syllabu	~
	IGCSE EXAMINATIONS – JUNE 2003 0654	They a
9 (a) (i)	in the earth/in porous rocks/with petroleum/from biogas/ action of microorganisms on organic matter/compost/cattle/paddy	fields/other,
(ii)	four shared pairs shown; all otherwise correct (no other outer electrons);	2
(iii)	three carbons and eight hydrogens; all single bonds shown; 2	
(iv)	carbon dioxide + water;	2
(b) (i)	$2 \operatorname{CH}_{4} + 3 \operatorname{O}_{2} \rightarrow 2\operatorname{CO} + 4 \operatorname{H}_{2}\operatorname{O};$	1
(ii)	+2; need for charge balance;	2
(iii)	CO is toxic/harmful to health; cannot be seen or smelled/person would not know it was present action taken (e.g. leave the room, turn off the heater, open window	
		Total 12 marks
l0 (a) (i)	KE = $1/_2$ mv ² or obvious use of this relationship in calculation; calculation of KE at the two speeds <i>and</i> one shown to be four times the two speeds <i>and</i> one shown to be four times the two speeds <i>and</i> one shown to be four times the two speeds <i>and</i> one shown to be four times at the two speeds <i>and</i> one shown to be four times at the two speeds <i>and</i> one shown to be four times at the two speeds <i>and</i> one shown to be four times at the two speeds <i>and</i> one shown to be four times at the two speeds <i>and</i> one shown to be four times at the two speeds <i>and</i> one shown to be four times at the two speeds <i>and</i> one shown to be four times at the two speeds <i>and</i> one shown to be four times at the two speeds <i>and</i> one shown to be four times at the two speeds <i>and</i> one shown to be four times at the two speeds <i>and</i> one shown to be four times at the two speeds <i>and</i> one shown to be four times at the two speeds <i>and</i> one shown to be four times at the two speeds <i>and</i> one shown to be four times at the two speeds <i>and</i> one shown to be four times at the two speeds <i>and</i> one shown to be four times at the two speeds <i>and</i> one shown to be four times at the two speeds <i>and</i> one shown to be four times at the two speeds <i>and</i> one shown to be four times at the two speeds <i>and</i> one shown to be the two speeds at the two speeds	es the other; 2
(ii)	<i>small</i> increase in speed means <i>large</i> increase in kinetic energy; degree of injury is related to <u>kinetic energy</u> (at impact);	2
(b) (i)	force = mass x acceleration/acceleration = $4000 \div 1000$; $4m/s^2$;	2
(ii)	$32 = 0.5 \times 4 \times t^2;$	
(")	t = 4 seconds.	2

INTERNATIONAL GCSE

JUNE 2003

MARKING SCHEME

MAXIMUM MARK: 45

SYLLABUS/COMPONENT: 0654/05

CO-ORDINATED SCIENCES (DOUBLE AWARD) Practical

Page 1	Mark Scheme S	Syllabu 7.0
	IGCSE EXAMINATIONS – JUNE 2003	0654 203
		Canny
1 (a) (i)	feels warm;	1 1146
(ii)	condensation/water/clear liquid;	Syllabu 0654 1 1 1
(iii)	goes cloudy/milky/white; carbon dioxide is produced;	2
(iv)	oxygen/air;	1
(v)	slower process/no burning/done by enzymes/lower temperature;	1
(vi)	oxygen used/CO ₂ produced/energy released/water relea	ase. 1
(b) (i)	A – pale blue B – purple/mauve/lilac;	2
(ii)	В;	(1, 1)
(c) (i)	colour change to red/green/yellow;	1
(ii)	(reducing) sugar;	1
(iii)	yes;	1
(iv)	starch catalysed/changed/broken down to sugar;	1
(v)	add iodine solution; goes blue/black.	2

Page 2	Mark Scheme Syllabu	·A
	IGCSE EXAMINATIONS – JUNE 2003 0654	No.
		w.papacambildge.com
2 (a) (iii)	a reading for h_o	10.
	5 readings taken (-1 if not in g)	20
	force calculated correctly	0.0
	extension calculated (deduct 1 if not in mm)	4 0
(b)	axes labelled correctly	
. ,	sensible scale	
	plotting correctly carried out	
	best line drawn goes through or would go through origin	4
(c)	extension read correctly or calculated	1
(d)	proportional (allow one if says extension increases by fixed	
(u)	amount for fixed force)	2
		-
(e)	line correctly drawn and labelled	1
(f)	read extension	
()	use graph	
	calculate in g or kg using correct number,	
	i.e. /10 to kg or x 100 to g	3

Page 3	Mark Scheme Syllabu	
	IGCSE EXAMINATIONS – JUNE 2003 0654	030
		Can
3 (a)	each metal correct as –ve	Bri
	three values of p.d. to be within 0.2V of SV	DeCambridge.com
(c)	magnesium with a suitable explanation	2
(d)	correct order Mg, Zn, Cu	1
(e)	bubbling, colour fades, black/brown deposit, magnesium disappears or other suitable	3
	magnesium is displacing copper ion (some reference to electron movement or ion changes is essential to score both marks)	2
(f)	test with each metal note polarity compare this polarity with the other three	3

JUNE 2003

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 0653/06, 0654/06

COMBINED AND CO-ORDINATED SCIENCE Alternative to Practical

Page 1	Mark Scheme		Sylla	0
J	IGCSE EXAMINATIONS – J	UNE 2003	0653/065	°Do
			·	
	correct headings (1) data entered time 0 entered (1)	d accurately (1)	5ylla 0653/065	[3
)	elder: average water loss = 6.6 - divided by 90 (80) = 0.056 cm/s. pyrocantha: average water loss divided by 90 (80) = 0.19 (0.20) part marks: any length divided by correct time used in calculation (correct distances used in calcula	(0.525) (2) = 18.8 - 0.8 (or 18.8 cm/s (2) y any time (1) (ecf from table) (1)		[4
c)	different leaf area (shape) (1) giv area for transpiration/evaporatio OR different numbers/density of pyrocantha) gives lower rate of t	n OWTTE (1) stomata (1) OR wa	•	
d)	(change in) air movement/tempe	erature/humidity/ligh	t intensity	[1
			Total 10 r	
a)	magnesium copper (1) zinc copper (1)	2.0 (1) (MUST b 1.1 (1)	e 2.0)	ГЛ
				[4]
b)	most negative = magnesium most positive = copper			[2
(c)	magnesium, zinc, copper			[1]
d)	Find p.d. with each of the other r note which metal is positive/neg		1)	
	Metal X will be positive with a me judge position in reactivity series OR react metals with acid (1) ref reaction (1) rate of reaction judg OR react metal with solutions (1) displaces metals that are less re	by potential different ference to condition ed by bubbling (1)) of salts (1) of the c	ences (1) s of	
				[3

Page 2	Mark Scheme Sy	Ila. T.A.
	IGCSE EXAMINATIONS – JUNE 2003 06	53/065
(a)	160,122,85 +/- 1 mm, recorded in correct column (-1 for each error)	4444 Mar Day 100
(b)	forces: 1.5, 2.0, 2.5 N (-1 only if 2 or more incorrect) extensions: 110, 148, 185 (ecf) (-1 for each error)	I
(c)	sensible scales used (1) plotting points including origin	
(d)	proportional OR obeys Hooke's Law (1) Reject "as mass increases, extension increases" OWTT	E
(e)	place mass on hanger instead of masses and find the ex factor to convert extension or weight to mass in grams C	• • •
		I
	Т	otal 10 mai
(a)	(i) heat/thermal energy produced (1) turns cloudy/milky (1)
	 (ii) lower temperature/enzyme catalysed/lowered activations slower process/energy transferred by ATP/can be analog lucose not starch (any 1) 	
		[
(b)	(i) blue (1) lilac/purple/mauve (1)	I
	(ii) add iodine (solution) (1) turns blue-black/black/blue (1)
(c)	(i) (reducing) sugar present	[
	(ii) starch had been turned to sugar (1) by hydrolysis/brea	
	(long chain) molecules (1) (0 mark for "yes" without ex	pianation) [

			m	
Page 3	Mark Scheme		Sylla	
	IGCSE EXAMINATIONS	– JUNE 2003	0653/065	Da
5 (a)	(i) crystal dissolved (in the wate separating (1). Reject "melte particles diffused or disperse	ed"	rticles	pacambridge.com
	(ii) Warm/heat (1) stir (1) grind	up crystal (1) (any 2)		
(b)	Alkaline/alkali/pH higher thar	n 10		[2]
(0)		110		
				[1]
(c)	(i) dilute = mixed with water/wat concentrated"	ter added OWTTE. Re	ject "not	[1]
				[']
	(ii) alkali reacted with acid (vice	-versa) (1) pH = 7, neu	utralised (1)	
				[2]
	(iii) the alkali is in excess OWT reject "the acid has not read			
				[1]
	(iv) calcium hydroxide + ethano	ic acid + salt (or any n	ame) + water	
				[1]
			Total 10 m	arks
6 (a)	43.4 g, 93.6 g, 108.6 g (max 1 if the readings have l	been "inverted" but oth	erwise correct	t)
				[3]
(b)	(i) 108.6 - 43.4 = 65.2 g (e	ecf)		[~]
X - 7	(,	,		[1]
	(ii) 108.6 - 93.6 = 15 g (e	ecf)		
				[1]
		and have a data at the set		

(note: if the mass of salt is found by subtracting the mass of water (50g) from 65.2, the answer is 15.2)

Page 4	Mark Scheme Sylla
	IGCSE EXAMINATIONS – JUNE 2003 0653/065
(c)	Mark SchemeSyllaIGCSE EXAMINATIONS – JUNE 20030653/065 55 cm^3 [1](c) and (b) (i) (both correct) accept (b) and (c) if mass and volume are mentioned (or D = M/V)
(d)	(c) and (b) (i) (both correct) accept (b) and (c) if mass and volume are mentioned (or D = M/V) (accept 65.2g and 55cm ³ or 65.2/55 = 1.19 g/cm ³) [1]
(e)	Place hexane in measuring cylinder to a known volume (1) (weigh out 15g sodium chloride) and add to the hexane (1) note the new volume and subtract (1) Use of displacement can and measuring cylinder correctly described can get full marks [3]

Total 10 marks

ъ.

Grade thresholds taken for Syllabus 0654 (Co-ordinated Sciences) in the June 2003 examination.

	maximum mark available	minimum mark required for grade:			
		AA	CC	EE	FF
Component 1	40	-	27	20	17
Component 2	100	-	57	36	28
Component 3	110	70	48	-	-
Component 5	45	33	24	16	12
Component 6	60	45	33	22	14

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.