www.papacambridge.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the June 2004 question papers

o	654 CO-ORDINATED SCIENCES
0654/01	Paper 1 (Multiple Choice), maximum mark 40
0654/02	Paper 2 (Core), maximum mark 100
0654/03	Paper 3 (Extended Paper), maximum mark 100
0654/05	Paper 5 (Practical), maximum mark 45
0654/06	Paper 6 (Alternative to Practical), maximum mark 60

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 0654 (Co-ordinated Sciences) in the June 2004 examination.

	maximum	mir	nimum mark re	equired for gra	de:
	mark available	AA	CC	EE	FF
Component 1	40	34	26	19	16
Component 2	100	-	41	24	18
Component 3	100	66	42	24	18
Component 5	45	32	22	14	10
Component 6	60	48	39	25	17

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 0654/01

CO-ORDINATED SCIENCES Paper 1 (Multiple Choice)

ge 1		Mark Sch		Syllabu
	CO-0	ORDINATED SCIEN	NCES – JUNE 2004	0654
	Question Number	Key	Question Number	Syllabo 0654 Key D C C R
	1	Α	21	D
	2	В	22	С
	3	С	23	С
	4	В	24	В
	5	В	25	С
	6	В	26	D
	7	D	27	C
	8	D	28	D
	9	С	29	D
	10	D	30	D
	4.4		04	
	11 12	A C	31 32	C
	12	C	32 33	A C
	13 14	C	33	C
	14	D	34	D
	16	В	36	А
	17	В	37	С
	18	Α	38	Α
	19	С	39	Α
	20	Α	40	D

TOTAL 40

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 100

SYLLABUS/COMPONENT: 0654/02

CO-ORDINATED SCIENCES (DOUBLE AWARD) Paper 2 (Core)

Page 1	Mark Scheme	Syn So per
	CO-ORDINATED SCIENCES – JUNE 2004	065 200
(a) (i)	С;	and the
	D;	Onic
	В;	36
		Syn Baba per 065 Aba Cambridge C
(ii)	C and D (both required);	
	A, B & E (all required);	[2]
(b) (i)	30;	[1]
(ii)	25;	[1]
(iii)	different because of different numbers of electrons;	
	electrons have no mass;	[2]
		Total [9]
(a) (i)	synovial fluid;	
	provides lubrication ;	
	cartilage ;	
	provides smooth surface ;	[3] max
(ii)	pleural fluid / pleural membranes ;	[1]
(b)	trapping bacteria / dust ;	
	in respiratory system / trachea / nose / bronchus ;	
	so that they can be removed by cilia ;	[2] max
(c)	this diet increases blood cholesterol content ;	
	increases chances of deposits building up inside, blood	
	vessels supplying heart / coronary arteries ;	
	blood clot then prevents blood flowing through/increases	
	blood pressure ;	
	deprives heart <u>muscle</u> ;	
	of, oxygen / nutrients ;	
	so that part of heart stops working ;	[3] max
		Total [9]

Page 2	Mark Scheme Syllabu CO-ORDINATED SCIENCES – JUNE 2003 0654	
(a) 6000(l	CO-ORDINATED SCIENCES – JUNE 2003 0654	Cambridge.co.
(b) KE = ²	1/2 mv ² ;	Hage
. ,	x 6000 x 30 x 30 = 2 700 000; (allow ecf)	CO.
(c) 60 000	D(N);	[1]
(d) work =	= force x distance;	
= 60 0	00 x 55 = 3 300 000 J;	[2]
	r = work/time so time = work/power;	
= 3 30	0 000/100 000 = 33s;	[2]
(f) energ	y is lost/friction;	[1]
(g)(i) air pa	rticles vibrate;	
as ser	ies of compressions and rarefactions;	[2]
(ii) water	waves, any electromagnetic wave;	[1] Total [12]
4 (a)(i)	carbon dioxide;	[1]
(ii)	dilute hydrochloric acid/any acid;	[1]
(iii)	limestone mainly calcium carbonate;	
	carbon dioxide is evidence of carbonate;	
	idea that no proof of limestone only of carbonate;	[2] max
(b)	flame test;	
	some detail of how to do test e.g. HC <i>l</i> & nichrome wire;	
	brick red colour indicates calcium;	[2] max
(c)	reference to scarring of landscapre/air pollution from dust or vehicle	
	exhaust/excessive noise or danger from blasting/damage to habitats;	[1]
		Total [7]

Page 3	Mark Scheme	Syllabo
	CO-ORDINATED SCIENCES – JUNE 2003	0654 902
(a)	protein / DNA / other correct molecule ;	Syllabu 0654 0654 Syllabu 06554 Syllabu 0655 Syllabu 0655 Syllabu 055 Syllabu Syllabu Syllabu Syllabu Syll
(b)	bacteria ;	'89e.c
	in root (nodules) ;	
	of legumes / description of type of plant ;	
	convert nitrogen (from air) to ammonium ;	
	or	
	Haber process ;	
	nitrogen and hydrogen reacted;	
	nitrogen from air ;	
	using iron catalyst ;	
	or	
	lightning ;	
	nitrogen and oxygen react ;	
	in air ;	
	high temperature / high energy (from lightning) ;	[3] max
(c)	denitrification / denitrifying ;	[1]
(d)(i)	through root hairs;	
	by active transport / by diffusion ;	
	in solution;	
		[2] max
(ii)	xylem ;	[1]
-	-	Total [8]

Pag	e 4	Mark Scheme Syllabu	S.
		CO-ORDINATED SCIENCES – JUNE 2003 0654	10ac
6 (a)(i)	frictior	n;	Phy
	gain o	of electrons;	ona
	from o	cloth;	30.C
	nylon	is an insulator/prevents charge leaking;	MAN, Papa Cambridge.co. [2] m
(ii)	rod w	vas also negatively charged;	
	like c	harges repel;	[2]
(iii)	charg	e would not have built up/would have leaked away etc;	
	doesn	i't move away;	[2]
(b) (i)	gas ex	xpands;	
	beco	mes less dense;	[2]
(ii)	reduc	e radiation of heat;	[2]
	so les	s energy lost /less heating of gas needed;	
(c)	accel	erates;	
	frictio	n;	
	falls a	at a steady speed	[3]
			Total [13]
7 (a)(i)	ро	olymer is very much larger/heavier/consists of a long chain of	
	m	olecules linked together;	[1]
(ii)	gl	lucose;	[1]
(b)(i)	(g	green material) more soluble in ethanol/less soluble in water;	[1]
(ii)	pl	ace some solution onto the start line;	
	di	ip into solvent;	
	a	void solvent covering spot of solution;	
	al	llow solvent to soak up paper;	
	re	eference to closed environment;	
	re	emove when solvent reaches upper line;	[3] max
(iii)	(coloured material is a mixture/containing four components;	[1] Total [7]

	42	2
Pag	e 5 Mark Scheme Syllabu	A.D.
	CO-ORDINATED SCIENCES – JUNE 2003 0654	Pac.
8 (a)(i)	proteins, fats and carbohydrates ;	ambric (1)
(ii)	as fat ;	W. Papacambridge.com
(b)(i)	insulin ;	[1]
(ii)	pancreas ;	[1]
(iii)	higher concentration / low water potential, in blood ; water moves out of cells (by osmosis) ;	
	cells become dehydrated / explanation of damage to cells ;	[2] max
(c)(i)	by diffusion ;	
	from red blood cells ;	
	down concentration gradient / into area of low oxygen	
	concentration ;	[2] max
(ii)	anaerobic respiration ;	
	lactic acid produced ;	[2] Total [10]
9 (a)	nucleus;	
	splits;	[2]
(b)	atoms with same number of protons but different numbers of neutrons;	[1]
(c)	Cs-137 in milk	[1]
(d)	radiation from grass (if any) won't penetrate human (unless gamma); once inside body will penetrate more; sheep meat will contain large amounts of radioactive material;	
	mutations;	[2] max
(e)	cosmic radiation/ rocks etc;	[1]
(f)	less CO ₂ emission/global warming etc/fossil fuels running out etc;	[1] Total [8]

Page 6	Mark Scheme Syllabo	· A
	CO-ORDINATED SCIENCES – JUNE 2003 0654	10ac
		PHA
0 (a)(i)	flask becomes warm / temperature of mixture increases;	onia
		IN, Papa Cambridge.co
(ii)	magnesium + sulphuric acid magnesium sulphate +	
	hydrogen;	[1]
<i>/</i>)	· · ·,	
(iii)	ignite gas;	101
	pops;	[2]
(b)(i)	8 minutes;	[1]
(ii)	everywhere above the existing line after start;	
	levels off earlier and at the same final volume;	[2]
(iii)	reaction rate greater;	
	graph steeper because more gas produced per minute;	
	powder has greater surface area;	[2]
	same final volume because amounts of reactants same;	[3] max
		Total [10]
1 (a)	one mark per correct label ; ; ;	[3]
(b)	oxygen ;	[1]
(c)(i)	(unidirectional) light ;	[4]
(c)(i)		[1]
(ii)	obtain more light ;	
	for photosynthesis ;	[2]
		Total [7]

Total for Paper = [100]

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 100

SYLLABUS/COMPONENT: 0654/03

CO-ORDINATED SCIENCES (DOUBLE AWARD) Paper 3 (Extended)

Pag	e 1 Mark Scheme Syn	Der Der
	e 1 Mark Scheme Syn CO-ORDINATED SCIENCES – JUNE 2004 0654	StaCanto,
1(a)	P key made up of pairs of statements ;	A. Papacambridge.con
	 C each pair of characters genuinely contrasting and usable ; A all animals key out correctly ; 	
	F (no more than) four pairs of characters used ;	4
(b)	hair / fur ;	1
(c)(i)	no teeth ;	
	lay eggs ; not 'only lay a single egg'	2
(ii)	internal fertilisation / fertilisation in oviduct ;	
	feed young on milk / have mammary glands ;	2
		Total [9]

Acceptable pairs for C:

has tail / has no tail has long tail / has (very) short tail stands on 4 legs / stands on two legs spots / no spots spikes / no spikes only end of tail furry / fur all along tail blunt snout / long pointed snout whiskers / no whiskers

Not acceptable:

large eyes / small eyes long legs / short legs big ears / small ears

		Mary .
Page 2	Mark Scheme	Syn Sper
	CO-ORDINATED SCIENCES – JUNE 2004	065

2(a) wave;

Γ

2		Mark Scheme Syn	papaCa.
	CO-ORDIN	ATED SCIENCES – JUNE 2004 065	Da
			Co
wa	/e ;		
use	;		
		viewing body organs medical	
gar	nma rays	imaging / tracing	
		checking structures – e.g. bridges	
		treating cancer	
		sterilising food	
		viewing bones / body organs /	
X ra	ays	medical imaging / CT scanning	
		security checks (at airports)	
		fluorescent lights	
ultr	aviolet	sterilising things	
		cooking security sensors	
infr	ared	carrying signals (in optical fibres)	
		remote controls (e.g. television)	
		night-viewing scopes	
		cooking mobile phones	
mic	rowaves	transferring information (as radio	
		waves)	
		satellite communication	
L			

(b)	travel at same speed / transverse waves/ can travel through	
	vacuum ;	1
(c)	ref to static electricity ;	
	screen acquires negative charge / electrons have negative	
	charge ;	
	dust particles have, opposite / positive, charge /attraction	
	between positive	
	and negative charges ;	
	max 1 if reference to magnetic field	2 max
d(i)	red, green and blue ; ; <i>1 mark for two correct, 2 marks for all correct</i>	2
(ii)	(all) other colours can be made from these ; ignore refs to white, or to e.g.s of pigment mixing	1 Total [8]

Page	A Mark Scheme Syn	ber
	Mark Scheme Syl CO-ORDINATED SCIENCES – JUNE 2004 065	Space 1
		an.
3(a)	`low density / light(weight) ;	Oria
	keep mass of aircraft down / increase fuel efficiency ;	Se.C
(b)(i)	MgCl ₂ ;	oapacambridge.ge
	reference to charge balance ;	2
(ii)	(liquid) so it can conduct / transfer charge / allow current to	
	flow ;	
	ions in solid cannot move ;	
	ions free to move when molten ;	
	if described in terms of electrons flowing, only first point	
	available	
	or	
	if it were in solution ;	
	hydrogen would form instead of magnesium ;	2 max
(iii)	ions move to, cathode / negative electrode / steel electrode ;	
	gain electrons (from cathode) ;	
	gain two electrons each ;	2 max
(iv)	<u>chlorine</u> is produced and is toxic ;	
	not just 'dangerous' 'dangerous to health' is OK	1
(c)	the greater the difference in reactivity, the higher the voltage ;	
	explanation of how results show that X is less reactive than	
	iron ;	2
		Total [11]

Page	e 4 Mark Scheme Syn	per
	CO-ORDINATED SCIENCES – JUNE 2004 065	apac.
		oapaCambridge.
4(a)(i)	1 as temperature increases, movement / kinetic energy, of	1940
	molecules increases ;	
	2 more collisions ;	
	3 more energetic collisions ;	
	4 between, enzyme and substrate / lactase and lactose ;	3 max
(ii)	(high temperatures) destroy (shape of) / denature, enzyme ;	
	progressively / more enzymes destroyed the higher the	
	temperature ;	
	all enzyme destroyed by ~95 $^{\circ}$ C ;	2 max
(b)	curve the same shape as the first one ;	
	lower optimum temperature (between 30 and 40 $^{\circ}\text{C}$) ;	2
(c)(i)	<u>catalysts</u> ;	
	not used up in the reaction ;	2
(ii)	the milk product does not contain lactase / no need to remove	
	lactase ;	1
(d)	small intestine / ileum ;	
	through villi ;	
	by diffusion / active transport ;	2 max
		Total [12]

Pag	je 5 Mark Scheme Syn	ber
	CO-ORDINATED SCIENCES – JUNE 2004 065	NaC.
(a)	wavelength = velocity ÷ frequency ; <i>ignore triangles</i>	mbri
	1500 ÷ 50 000 ;	990
	0.03 m / 3 cm ; <i>unit essential</i>	M. Papa per Dana Cambridge.co.
o)	distance travelled is 2400 (m);	
	time = distance ÷ speed ;	
	1.6 s ; unit essential	
	doubling may occur at any stage of the calculation	
	maximum 2 marks if no doubling - answer then 0.8 s	3
)	ultrasound is not <u>ionising</u> / X rays are <u>ionising</u> ;	
	less possibility of harm / X rays can harm, mother / baby,	
	cells ;	2
d)	20 000 / 23 000, Hz ; unit essential	1
		Total [9]

Page	6 Mark Scheme Syn	per
	CO-ORDINATED SCIENCES – JUNE 2004 065	Dag
		an.
(a)(i)	animal waste / pesticides / fertilisers/ nitrates, from farmland ;	Orice
	chemicals / waste / reasonable named substance from	300
	industry ;	apacambridge.
i)	1 microorganisms / pathogens / bacteria / microbes / viruses,	
	may be present ;	
	2 dissolved substances may be present ;	
	3 which pass through filter / only solids stopped by filter ;	
	4 may make you ill / may be toxic ;	3 ma:
ii)	chlorination / ozone ;	
o)(i)	removes dissolved calcium / calcium carbonate, is not soluble	
	/ precipitates ;	
i)	1 formula mass of calcium carbonate is $40 + 12 + (16 \times 3) =$	
	100 ;	
	2 number of moles of calcium carbonate = 0.25 ÷ 100 =	
	0.0025 ;	
	3 this is the number of moles of hydrogencarbonate in 0.5	
	dm ³ ;	
	4 so concentration = $0.0025 \div 0.5 = 0.005 \text{ mol dm}^{-3}$;	
	if a different approach taken, look for equivalents to points 2	
	and 3	3 ma
		Total [10

Page	7 Mark Scheme S	yn oer
	CO-ORDINATED SCIENCES – JUNE 2004	065. Apac
(a)(i)	A_1 and A_2 are both 2.0 A ;	andri
	A ₅ is 0.5 A ;	300
	unit essential - maximum 1 mark if no units	MMM. Papa per 065. Papa Cambridge.co
ii)	2;	1
b)	both 6V ;	
	unit essential, but do not penalise again if have already done	
	so in (a)(i)	1
c)	water conducts electricity ;	
	danger of, electrocution / electric shock / short circuit ;	2
		Total [6]

Page	8 Mark Scheme Syn	per
	8 Mark Scheme Syn CO-ORDINATED SCIENCES – JUNE 2004 065-	Dac
		Dapa Cambridge.co
8(a)(i)	1 to make it a fair test ;	oria
	2 to control a variable ;	Se
	3 leaves near end of branch different age from those near the	2
	4 leaves near trunk more shaded / leaves at end get more	
	sunlight ;	2 max
(ii)	support	
	mean length is longer on the shady side / vice versa <i>or</i>	
	longest leaf is longer on the shady side ;	
	not support	
	shortest leaf is shorter on the shady side / vice versa ;	2
(iii)	all the leaves have the same genes ;	1
(b)(i)	random / unpredictable ;	
	change in, DNA / gene / chromosome ;	2
(ii)	cell division / mitosis ;	
	during growth ;	
	chromosomes / genes / DNA/ mutation, passed from one cell	
	to its offspring ;	
	new cells formed are identical with parent cell ;	2 max
(iii)	1 lack of chlorophyll / green leaves contain chlorophyll ; <i>allow</i>	
	chloroplasts	
	2 which absorbs (sun) light ;	
	3 correct and relevant reference to photosynthesis ;	
	4 link made between, carbohydrates / food / equivalent, and	
	growth ;	3 max
		Total [12]

Page	9 Mark Scheme	Syl. per
	CO-ORDINATED SCIENCES – JUNE 2004	Syl ^{A,} A per 065 Anac
9(a)(i)	contains hydrogen and carbon only ;	MMM. Papa per 065. Apa Cambridge. G
(ii)	C ₈ H ₁₈ ;	Se. G
(iii)	alkanes ;	1
(b)	1 molecules in diesel are larger than those in gasoline ;	
	2 stronger intermolecular forces in diesel ;	
	3 therefore more energy needed to separate molecules	
	(hence high boiling point) ;	
	4 therefore more energy needed to drag molecules past each	h
	other (hence high	
	viscosity) ;	
		2 max
(c)(i)	molecules contain a double (carbon-carbon) bond ;	1
(ii)	mix with, bromine / potassium permanganate ;	
	mixture turns colourless ;	2
(iii)	far greater demand as reactant / can be used to make other	
	useful substances ;	
	e.g. ethanol / polythene ;	
	not just 'polymers' or 'plastics'	2 max
(d)	1 heat / high pressure ;	
	2 catalyst (phosphoric acid on silica) ;	
	3 mixture of ethene and steam (allow water if heat specified)	;
	$4 C_2 H_4 + H_2 O \longrightarrow C_2 H_6 O;$	3 max
		Total [13]

Page	10 Mark Scheme Syn	er per
	CO-ORDINATED SCIENCES – JUNE 2004 065	Than 1
~ ()		PHA
I0(a)	silver;	stick
	lowest voltage required ;	Sec
	allow 'least resistance' if supported by calculation	Papacambridge.co
(ii)	resistance = voltage ÷ current ;	
,	1.4 ÷ 0.8 = 1.75 Ω; <i>unit essential</i>	
		2
		4
c)(i)	steel ;	1
(ii)	power = voltage x current ;	
,	24 x 0.8 = 19.2 W ; <i>unit essential</i>	
	allow ecf if gave silver in (i) - answer is then 1.12 W	2
· .1X	4 - Roman San Radat / Isaa Jawaa -	
d)	1 aluminium is, light / less dense ;	
	2 aluminium, has low resistance / is good conductor ;	
	3 but aluminium is weak ;	
	4 steel is strong ;	
	5 but steel has high resistance ;	
	6 but steel is too, heavy / dense ;	
	7 both aluminium and steel are cheap / copper is expensive ;	3 max
	points 3, 5 and 6 must be written in such a way as to imply	
	that these are disadvantages - i.e. reasons why this metal is	
	not used alone	Total [10]

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 45

SYLLABUS/COMPONENT: 0654/05

CO-ORDINATED SCIENCES (DOUBLE AWARD) Practical

	Page '	Mark Scheme Syllabu Syllabu	
		CO-ORDINATED SCIENCES – JUNE 2003 0654	°C.
Que	estior	11	am
(a)		Mark Scheme Syllabu CO-ORDINATED SCIENCES – JUNE 2003 0654 1 good quality drawing of both leaf sections, both showing areas with and without chlorophyll drawing a leaf section A with no blue/black area (may be labelled brown)	d [2]
(b)		drawing a leaf section A with no blue/black area (may be labelled brown) drawing of leaf section B with blue/black area clearly shaded and labelled	[2]
		If reversed but fits first drawing, allow	
(c)		Plant B unless it follows from (b) that A is correct Leaf section turned blue/black	[2]
	(ii)	starch only found in areas where there is chlorophyll or where it is green	[2]
(d)	(i)	to kill the leaf/soften the cuticle	[1]
	(ii)	so that the colour change with iodine can be seen or green colour would mask test	d [1]
	(iii)	to make the leaf flexible so it can be spread out on tile	[1]
e)	(i)	heat/boil; in Benedict's solution; positive result goes green/yellow/red	[3]
	(ii)	green part because chlorophyll is needed for photosynthesis or making starch/sugar	[1]
		Tota	l = 15
Que	estior	12	
(a)	(i)	value for h within 0.4 mm of supervisor	[1]
	(ii)	brief description of how volume was found	
		volume within 10 cm ³ of supervisor sensible volume	[2]
(b)		Table	
		Six pairs of values	
		Good spread to include a value equal to 150 cm ³	
		Values in mm and decreasing with volume of water (penalise 1 mark when all intervals are exactly the same)	[3]

Page	2 Mark Scheme Syllabo	2
	CO-ORDINATED SCIENCES – JUNE 2003 0654	DaC.
c)	Graph	en
	Axes correctly labelled	Papacann
	Sensible scales for the plotted points	
	Plotting correct for 4 values	
	Best straight line drawn	[4]
	Volume correctly read needs evidence of extrapolation	
	Within 10% of recorded volume	[2]
(d)	measure water level in cylinder	
	put in block and record new level	
	volume of water displaced calculated is equal to the volume of block	[3]
		Total = 15
Questio	n 3	
(a)	gas/vapour burns	
	limewater milky	
	brown or charring/smoke/smell	[3]
b)	goes out NOT 'nothing'	
	limewater milky	[2]
c) (i)	decolourised	[1]
(ii)	UI goes red	
	pH about 1-4	
	acid present	[3]
d)	blue/green	
	pH about 8-10	
	no mark for conclusion	[2]
e)	effervescence or gets cold	[1]
f)	brief description	[1]
	diagram	[2]

Total = 15

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 0653/06, 0654/06

COMBINED AND CO-ORDINATED SCIENCE Alternative to Practical

Page	1 Mark Scheme Sylla CO-ORDINATED SCIENCES – JUNE 2004 0653/	/065 Pb
Questic	on 1	aCan.
(a)	Clear drawing of strip from leaves A and B (1) green areas/chlorophyll correctly labelled (1)	MMM. Daha Cambrid
(b)	light brown/brown/yellow on leaf A (1) blue/black area on leaf B (1)	[2]
(c)(i)	Leaf A: because no starch present/has been used up (1) no photosynthesis /light is needed to make starch (1)	[2]
(ii)	starch found in green areas/where chlorophyll is found (1) chlorophyll is necessary for starch synthesis/photosynthesis (1)	[2]
		Total 8 marks
Questic	on 2	
(a)	1.8V(1), 150 mA 2.4V(1), 250 mA +/- 0.1V, +/-10 mA (1 mark for both current	readings) [3]
(b)	2 points correctly plotted (2) line drawn (can be straight or curved)(1)	[3]
(c)(i)	the bulb becomes brighter as resistance decreases	[1]
(ii)	the filament of the bulb melted OWTTE	[1]
(d)	No, since it is not a straight line/V and I are not proportional. OR yes, graph is a straight line /(they are proportional)	[1]
		Total 9 marks
Questic	on 3	
(a)(i)	53.4 g, 60.0 g (Must say 60.0), no tolerance (2)	
(ii)	6.6 g (ecf) (1)	[3]
(b)	blue litmus (U.I) paper turns red in the gas (reject add indicator)	[1]
(c)(i)	56.8 g (no tolerance)	
(ii)	3.2 g (ecf) both correct for 1 mark	[1]
(d)	evaporate to remove some water (1) leave the solution to cool (1) OR evaporate solution(1) over a boiling water bath (1)	[2]
(e)(i)	62.9 g, (no tolerance) (1)	
(ii)	9.5 g (ecf) (1)	[2]
(f)	some copper nitrate left in the solution during crystallisation/ water of crystallisation was lost/copper nitrate decomposed/ other suitable answer based on experimental details	[1]
		L .

	2 Mark Scheme Syll CO-ORDINATED SCIENCES – JUNE 2004 0653	an 3/065 20
Questi	on 4	MANAN, Papacambrie 3/069 Papacambrie [2]
(a)	0.8, 0.5 (no tolerance)	101
(b)	42, 37°C (no tolerance)	[2
(c)(i)	17, 12 °C (errors carried forward)	[2]
(ii)	ring: $\frac{50 \times 17 \times 4.2}{0.8}$ (ecf) (1) = 4462.5 (1)	
	cheeso: $\frac{50 \times 12 \times 4.2}{0.5}$ (ecf) (1) = 5040 (1)	
	joules/J (kJ accepted if energy totals divided by 1000) (1)	[5]
(d)	respiration	[1]
		Total 12 marks
Questi	on 5	
(a)	box 1 colourless(clear) to cloudy/milky (1) carbon dioxide /carbo box 2(a) carbon dioxide (suspected)/gas will not support combust no oxygen/no hydrogen/may be nitrogen(1) Box 2(b) carbon dioxide confirmed (1) Box 3 turned from green(1) to red (1) Box 4 turned to yellow/orange (1)	
(b)	reaction vessel with delivery tube (1) gas collected over water or in syringe(1) means of measuring gas volume/graduations shown (1)	[3]
		Total 10 marks
Questi	on 6	
(a)(i)	Use a pipette/dropper/burette	[1]
(ii)	103 (no tolerance) (1) 147 (ecf) (1)	[2]
(b)	28mm, 14mm (+/- 1 mm)	[2]
(c)(i)	correct axes labelled and scale correctly shown (1) all points from Fig.6.3 plotted correctly (1) straight line drawn extended to cut horizontal axis (1)	[3]
(ii)	From candidates' own graph (approx 147 cm ³)	[1]
(iii)	it will sink OWTTE	[1]
<i>.</i>	Yes/ comparison of (a) and (c)(ii) shows that mass in cup is nume	erically
(d)	similar to (or greater than) its volume OR No/ cup sank before its mass (g) exceeded the volume (cm ³) candidate's graph)	(depends on

