Name

www.PapaCambridge.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CO-ORDINATED SCIENCES

0654/02

Paper 2

May/June 2004

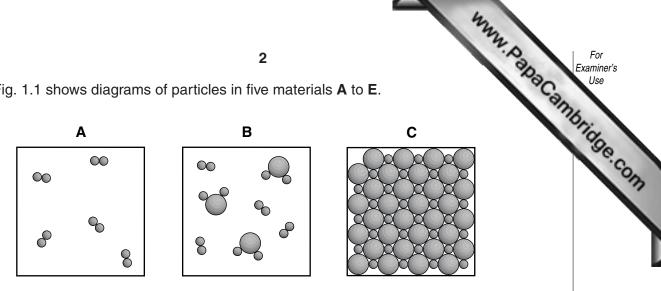
2 hours

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a soft pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.


The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 24.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
Total		

(a) Fig. 1.1 shows diagrams of particles in five materials A to E.

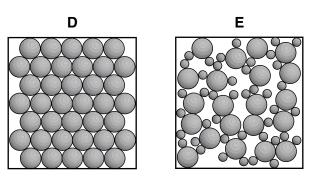
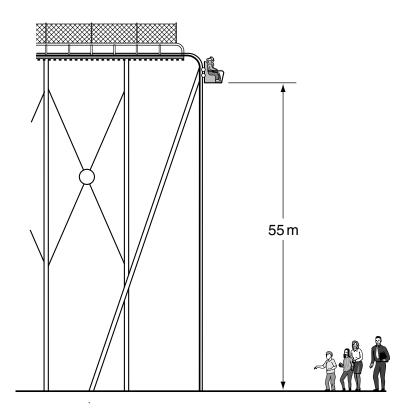



Fig. 1.1

	(i)	State which diagram, A B C D or E , represents		
		a solid compound,		
		a solid element,		
		a gaseous mixture.		[3]
	(ii)	State the letters of the particle diag	grams in Fig. 1.1 that represent	
		giant structures,		
		simple molecules.		[2]
(b)	The	full chemical symbol of an atom of	manganese is	
		55 25	1 n	
	(i)	State the number of neutrons in the	e nucleus of this atom.	[1]
	(ii)	State the number of electrons in a	manganese atom.	[1]
	(iii)	Explain why the manganese ion, manganese atom.	Mn ²⁺ , has very nearly the same mass a	s a
				[2]

		3 WMM.P.
2 (a)	(i)	Explain how friction is reduced between the bones of the arm when the bent.
	(ii)	Describe how friction is reduced between the lungs and the rib cage as the lungs inflate and deflate.
(b)		ne alimentary canal, friction between the food and the walls of the canal is reduced slippery mucus.
	Des	scribe one other function of mucus in the human body.
		[2]
(c)	ther surf roug	inner lining of blood vessels is normally very smooth, so that blood can flow through measily. However, sometimes deposits of cholesterol can build up on the inner ace of the blood vessels supplying the heart wall. This makes the surface much gher. When blood platelets come into contact with a rough surface, they tend to form od clots.
		this information, and your own knowledge, to explain why a person whose diet tains a lot of animal fat has an increased risk of having a heart attack.

www.PapaCambridge.com A ride at a theme park consists of a car of mass $4800\,\mathrm{kg}$, which holds 20 people and vertical distance of $55\,\mathrm{m}$. Its maximum speed during this fall is $30\,\mathrm{m/s}$. 3

(a)	passengers.
	kg [1]
(b)	Calculate the maximum kinetic energy of the ride during its fall.
	Show your working and state the formula that you use.
	formula
	working
(c)	Calculate the weight of the car and 20 passengers.
	Earth's gravitational force is 10 N/kg.
	N. 543

	The state of the s	
	5	For Examiner's
(d)	Calculate the work done in raising the car and 20 passengers from the bottom to of its 55 metre fall. Show your working and state the formula that you use. formula	Use
	Show your working and state the formula that you use.	Tide
	formula	COM
	working	
	J [2]	
(e)	The electric motor which lifts the car and passengers is rated at 100 kW. Calculate the time it would take for the car and passengers to be raised from the bottom to the top of the fall.	
	Show your working and state the formula that you use.	
	formula	
	working	
	s [2]	
(6)		
(f)	In practice, the time taken to reach the top of the fall will be longer than your answer to part (e) . Explain why.	
	[1]	

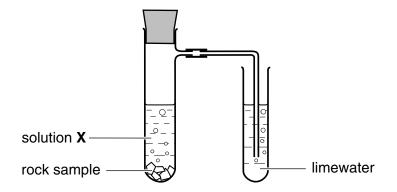
(g) The passengers in the car scream when the car begins to drop.

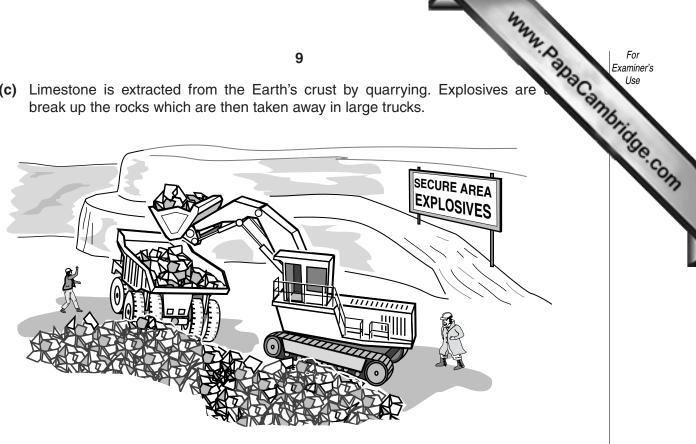
	e passengers in the car scream when the car begins to drop.	
	6	For Examiner's
The	e passengers in the car scream when the car begins to drop.	Use
(i)	Explain how the sound of the screams travels through the air to people watchin the ride.	Sridge con
		13
	[2]	1
(ii)	Sound is an example of a longitudinal wave.	
	Give one example of a transverse wave.	

.....[1]

7 BLANK PAGE www.PapaCambridge.com

- 4 A rock sample, thought to be limestone, is tested in a laboratory.
 - (a) Fig. 4.1 shows apparatus used for one of the tests applied to the rock sample.




Fig. 4.1

During the test the limewater turns cloudy.

(b)

(i)	Name the gas produced when solution X reacts with the rock sample.
	[1]
(ii)	Suggest the name of solution X.
	[1]
(iii)	Explain how this test provides some evidence that the rock may be limestone.
	[2]
	scribe another test which could be applied to the rock sample to find out whether it tained any calcium compounds.
	[0]

(c) Limestone is extracted from the Earth's crust by quarrying. Explosives are break up the rocks which are then taken away in large trucks.

Suggest one environmental problem caused by the extraction process.
[1]

www.papaCambridge.com Fig. 5.1 shows part of the nitrogen cycle. 5 nitrogen gas in the air nitrogen fixation process feeding nitrogennitrogencontaining containing compounds death, in animals compounds excretion in plants and decay absorption ammonium ions and nitrate ions in the soil Fig. 5.1 (a) Name one type of molecule, found in both animals and plants, which contains nitrogen. (b) Describe one way in which nitrogen fixation can occur.

(c)	Nar	11 ne process X.	For Examiner's Use	
()		' 	andy.	
(d)	(i)	Describe how plants take up nitrate ions from the soil.	Cambridge co	2
				7
			[2]	, R
	(ii)	Name the tissue in which these ions are transported within the plant.		
			[1]	

www.PapaCambridge.com 6 (a) A small balloon was charged negatively by rubbing it on a piece of woollen cloth. hung from a nylon thread supported by a metal stand. A plastic rod, which had rubbed on a different cloth, was held near the balloon. The balloon moved away from the plastic rod as shown in Fig. 6.1.

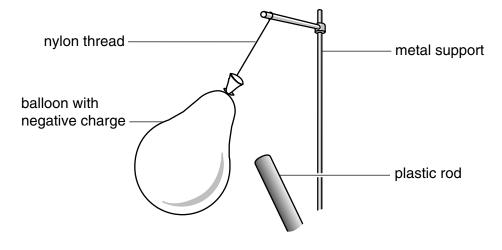


Fig. 6.1

(i)	Explain why the balloon became negatively charged.
	[2]
(ii)	Explain why the balloon moved away from the plastic rod.
	[2]
(iii)	Describe and explain what would happen if the nylon thread is replaced with a thin metal wire and the experiment repeated.
	[0]

(b) Fig. 6.2 shows a large hot air balloon.

Fig. 6.2

	(i)	Explain why a hot air ba	alloon rises when the air i	nside the balloon is heated.	
					[2]
	(ii)	Hot air balloons, which silver colour.	n are designed to travel lo	ng distances, are often painte	d a
		Suggest a reason for th	nis.		
					[2]
(c)	A sr	mall object falls from the	balloon.		
	Cho	ose the best words or p	hrases from the list to cor	nplete the sentences below.	
	acc	elerates	air pressure	falls at a steady speed	
	fric	tion	gravity	slows down	
	The	weight of an object is th	ne force of gravity acting o	n it.	
	Whe	en an object is dropped,	it initially		
The faster it falls the bigger the force of			acting on it.		
	Eve	ntually the object			[3]

7 Sugars, starch and proteins from plants provide food for other organisms. Star proteins are natural polymer molecules.

	14 MANN, Day	For Examiner's
-	starch and proteins from plants provide food for other organisms. Star	Use 6
a) (i)	Describe briefly one major difference between a polymer molecule and a molecule such as carbon dioxide.	bridge com
(ii)		
(,	in starch.	

(b) A student extracted the coloured material from some green leaves. She ground up the leaves to break the cell walls so that the green substance could form a solution in ethanol.

She then carried out paper chromatography using the solution and obtained the chromatogram shown in Fig. 7.1.

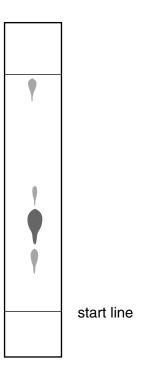


Fig. 7.1

` '	not water.	the solution	usea in 1	ine experir	nent was	made by	using etnan	oi and
								[1]

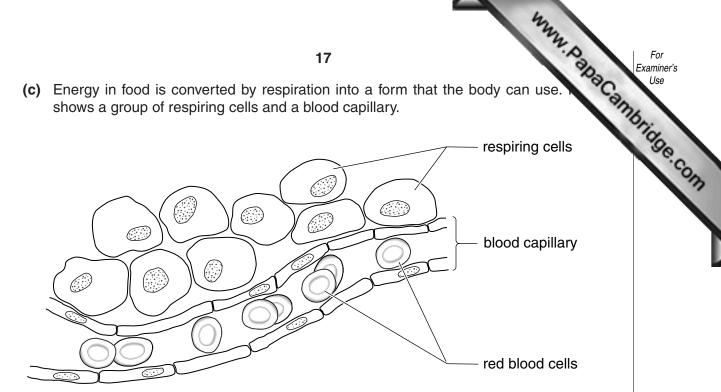
	For
Ex	aminer's
	1100

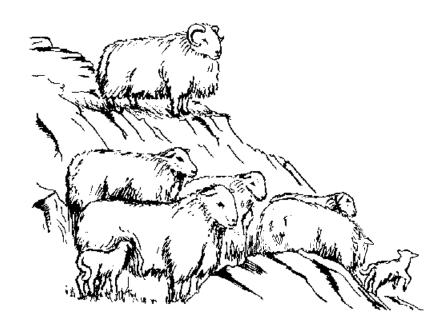
(ii)	Describe briefly what the student had to do to obtain the chromatogram sharps 7.1.	For Examiner's Use
(iii)	From the chromatogram, what conclusion can the student draw about the coloured material she extracted from the leaves?	
	[1]	

ı	For
	Examiner's
ı	11

		The state of the s
		16 A. P.
by	obesi	s have predicted that by 2010 more people will be dying because of illness ty (being very overweight) than from most other causes. People become on the take in much more energy in food than their bodies use each day. Name the three types of nutrient that contain energy which our bodies can use.
(a)	(i)	Name the three types of nutrient that contain energy which our bodies can use. [1]
	(ii)	State how any extra energy taken in as food is stored in the body.
(b)		of the illnesses that often develops as a result of obesity is diabetes. In this illness, body is not able to control the level of glucose in the blood.
	(i)	Name the hormone that is secreted when the blood glucose level goes too high, and which helps to bring the level down to normal.
	(ii)	Name the organ that secretes this hormone.
	(iii)	Using your knowledge of osmosis, suggest why it is dangerous for the body if blood glucose levels become much higher than normal.
		[2]

(c) Energy in food is converted by respiration into a form that the body can use. shows a group of respiring cells and a blood capillary.




Fig. 8.1

(i)	Describe how oxygen passes from the blood into the respiring cells.
	[2]
(ii)	Describe what happens in respiring muscle cells if the blood capillary does not deliver as much oxygen as they need.
	[2]

9 Read the passage and then answer the questions which follow.

Some power stations generate electricity using nuclear fission. In 1986, an accident occurred in a power station at Chernobyl in Ukraine. This released many radioactive isotopes into the atmosphere. Wind and rain caused these materials to contaminate grass all over Europe.

One of the most important radioactive isotopes is caesium-137 because it remains in the environment for a long time. After sheep had been eating contaminated grass for five weeks, their bodies contained this isotope. Young lambs feeding on their mother's milk were found to have a very high concentration of caesium-137 in their tissues.

(a)	Explain what happens to an atom when nuclear fission occurs.	
		[2]
(b)	Explain the meaning of the term isotope.	
		[1]
(c)	Suggest why young lambs became very contaminated as a result of their diet.	
		[1]

(d) A scientist suggested that it was safer to walk on the radioactive grass than to

	For
Exa	aminer's
	11

www.PapaCambridge.com from a sheep a few weeks after the accident. Explain why this was correct.[2] (e) The accident increased the background radiation present in the environment. Give one natural cause of background radiation.[1] (f) State one advantage of nuclear power as a method of generating electricity compared to the burning of fossil fuels.

10 A student investigates the rate of reaction between dilute sulphuric acid and mag ribbon. The apparatus he uses is shown in Fig. 10.1. When the conical flask is 3 shaken, the container of sulphuric acid tips over, allowing the reaction to start.

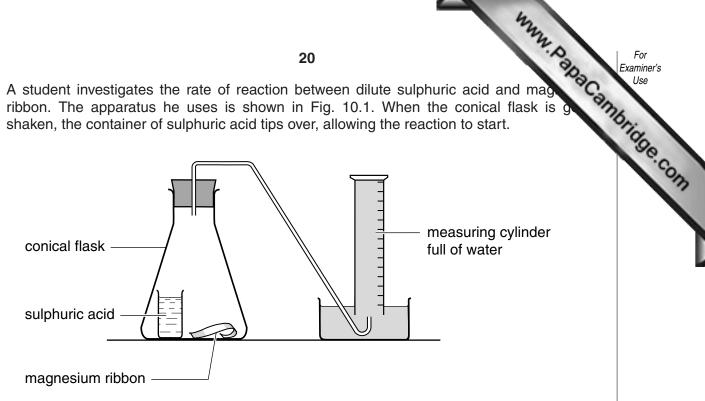


Fig. 10.1

In this reaction hydrogen gas is formed and it bubbles into the measuring cylinder.

(a)	(i)	The reaction is exothermic.	
		State the observation which would show that the reaction is exothermic.	
			. [1]
	(ii)	Write the word equation for the reaction.	
			. [1]
((iii)	Describe the test for hydrogen.	
			[0]

(b) Fig. 10.2 shows a graph of the results obtained by the student.

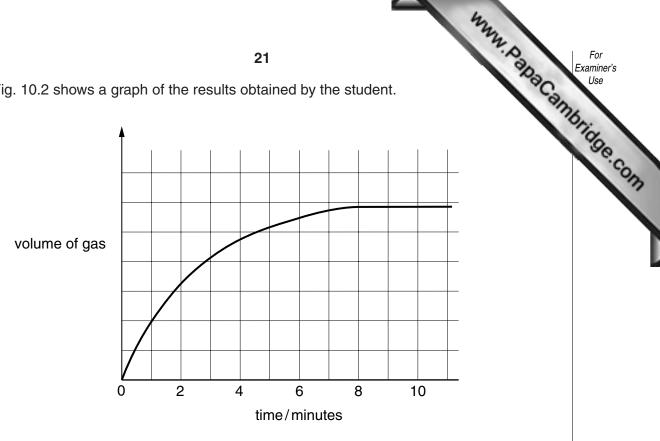


Fig. 10.2

(i)	For what length of time did the reactants produce gas?
	[1]
(ii)	The student repeats the experiment using the same amount of the acid and the same mass of magnesium. This time, however, he uses magnesium powder instead of magnesium ribbon.
	On Fig. 10.2, sketch a curve which shows the results of the experiment using magnesium powder. [2]
(iii)	Explain your answer to (ii).
	[3]

11 Fig. 11.1 shows the structure of a seed.

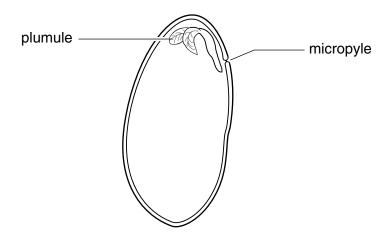


Fig. 11.1

- (a) On the diagram, draw label lines to each of the following parts, and label them:
 - the testa
 - a cotyledon
 - the radicle [3]
- (b) State one substance, other than water, that seeds need for germination.

.....[1]

(c) Twenty seeds were placed on wet cotton wool and allowed to germinate. Ten were kept in a light place, while the other ten were kept inside boxes with a hole in one side.

Fig. 11.2 shows the appearance of one seedling from each group.

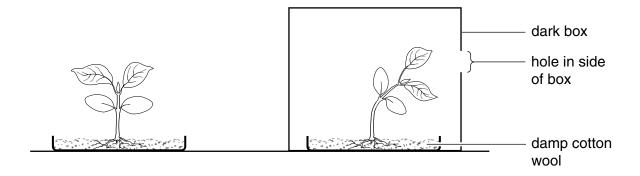


Fig. 11.2

(i) Name the stimulus to which the seedling in the box has responded.

_____[1]

For Examiner

(ii)	Explain how this response of the seedling in the box may increase the chan survival.	Use
		ac'C
	[2]	

	Elements
DATA SHEET	The Periodic Table of the

							Group	dn									
_	=											>	>	N	II	0	,
						- 3										4	
						Hydrogen										Helium 2	
7	0						_				=	12	14	16	19	20	
=	Be									_	М	ပ	z	0	ш	Ne	
3 Lithium	Beryllium 4										Boron 5	Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10	
23	24									_	27	28	31	32	35.5	40	
Sodium	Magnesium										Aluminium		Phosphorus	rō.	Chlorine	Argon	
30	12	45	7	22	r,	u u	200	ou u	2	α α	13	73	75	79	17	28	,
ß Y	ဒီ	° ⊏	5 >	ა ბ	S E	я .	ී රි	ß Z	, J	S Z	g B	ge ²	¥	ို့ လ	<u>₽</u>	₹ Ż	
Potassium 19	Calcium 20	r 22	Vanadium 23	Chromium 24	Manganese 25	Iron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32	Arsenic 33	Selenium 34	Bromine 35	Krypton 36	24
85	88	89 91	86	96		101	103	106	108	112	115	119	122	128	127	131	4
Rb	S	Y	QN	Мо	C	Ru	R	Pd	Ag	В	In	Sn	Sb	Te	П	Xe	
Rubidium 37	Strontium 38	Yttrium Zirconium 39 40	Niobium 41	Molybdenum 42	Technetium 43	Ruthenium 44	Rhodium 45	Palladium 46	Silver 47	Cadmium 48	Indium 49	Tin 50	Antimony 51	Tellurium 52	lodine 53	Xenon 54	
133	137		181	184	186	190	192	195	197	201	204	207	209				
S	Ва		Т <u>а</u>	>	Re	so.	<u></u>	풉	Au	Нg	1	В	Ö	S.	¥	æ	
Caesium 55	Barium 56	Lanthanum Hafnium 57 * 72	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	Iridium 77	Platinum 78	Gold 79	Mercury 80	Thallium 81	Lead 82	Bismuth 83	Polonium 84	Astatine 85	Radon 86	
ù	226	227															
Francium 87	Radium 88	Actinium +															
58-7118	58-71 Lanthanoid series	d series	140	141	144		150	152	157	159	162	165	167	169	173	175	1
.90-103	90-103 Actinoid series	series	Cerium 58	Pr Praseodymium 59	Neodymium 60	Pm Promethium 61	Sm Samarium 62	Eu Europium 63	Gd Gadolinium 64	Tb Terbium 65	Dy Dysprosium 66	Holmium 67	Erbium	Tm Thulium	Yb Ytterbium 70	Lu Lutetium 71	4
	а	a = relative atomic mass	232		238												n
(e)	×	X = atomic symbol	두	Ра	-	dN		Am	Cm	Bk	₽	Es	FB	Md	N	Ľ	21
Ω	Q	b = proton (atomic) number	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrenc 103	O PO
			The	The volume of one mole of any das is 24 dm ³ at room temperature and pressure (r t n)	alom and	of any ga	2 is 24 dr	13 at room	. temnera	ture and	Dressure	(rtn)				Cal	-
			2			200	5	3				· · · · · · · · · · · ·			1	76	
															190	To	
															o.co	1	
													Ļ		3		2

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).