Centre Number Candidate Number Nar
--

www.PapaCambridge.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CO-ORDINATED SCIENCES

0654/03

Paper 3 (Extended)

October/November 2006

2 hours

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

1 Fig. 1.1 shows five birds that live in New Zealand.

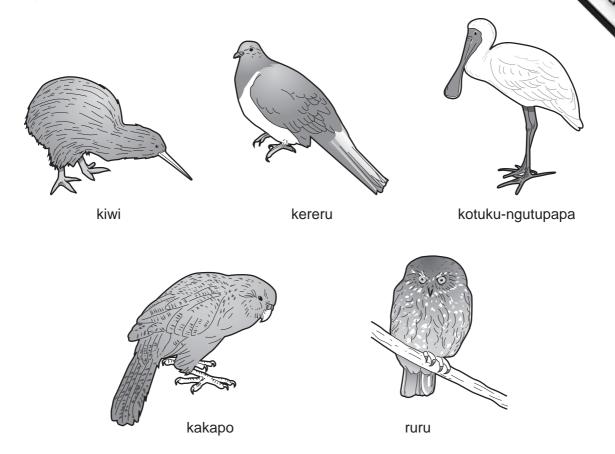


Fig. 1.1

- (a) Construct a key that could be used to identify these five birds. The first part of the key has been done for you.
 - 1a has wings
 - b no wings

go to 2 kiwi

	The state of the s
	3 A. Day
(b)	Each kind of living organism that is known to exist has been given a binomial. The binomial of the kiwi is <i>Apteryx mantelli</i> . What does a binomial tell you about an organism?
	What does a binomial tell you about an organism?
	[2]
(c)	Many of New Zealand's birds cannot fly. They have evolved like this because, before humans arrived in New Zealand, there were no predators on the ground. There was no advantage for birds in being able to fly.
	Now cats and other predators have been introduced to New Zealand. They kill and eat the flightless birds. Many species of these birds are in danger of becoming extinct.
	Suggest how, over a long period of time, a species of flightless bird might evolve to become able to fly.
	[4]
	[4]

www.PapaCambridge.com Chemical reactions are useful sources of energy. Heat is produced when fuels are 2 and electrical energy is provided by chemical reactions in cells and batteries.

1	a	Underline	the two	fossil f	iuels in	the list	helow
١	a	Undermie	IIIC LWO	103311 1	u c io iii	uie iist	DCIOW.

animal faeces (dung)	coal	hydrogen
methane	uranium	wood

[1]

(b) Assume that gasoline consists of the hydrocarbon heptane, C₇H₁₆. The mass of 1 dm³ of heptane is 684 g.

The balanced equation for the complete combustion of heptane is

$$C_7H_{16} + 11 O_2 \longrightarrow 7 CO_2 + 8 H_2O$$

(i) Calculate the number of moles of heptane in 1 dm³.

Show your working.

	[2]
(ii)	A car uses on average 1 dm ³ of gasoline to travel a distance of 20 km.
	Find the theoretical mass of carbon dioxide which the car will produce in travelling 20 km.
	Show your working.
	[3]
(iii)	Suggest one reason why the actual mass of carbon dioxide which the car will produce will differ from your answer to (ii).
	[4]

(c) Fig. 2.1 shows a cell which is providing electrical energy.

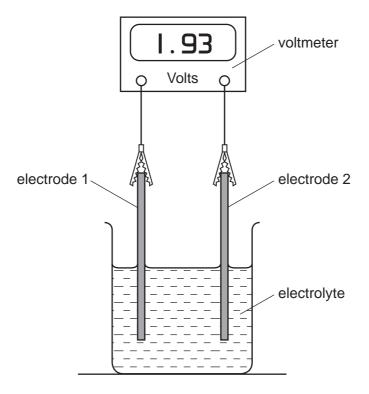
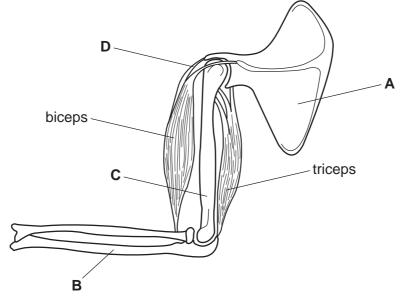


Fig. 2.1


(i) A student sets up apparatus similar to that in Fig. 2.1. She has electrodes made of magnesium, iron and copper from which to choose.

	Explain which electrodes she should choose so that the cell provides the greatest amount of electrical energy.
	[3]
(ii)	A car battery is designed to last for many years, but a torch battery will often need to be replaced.
	Explain this difference.
	[2]

		find the density of an object you need to measure its mass and volume. Describe how the volume of a small irregular object can be measured.	
		6	20
(a)	То	find the density of an object you need to measure its mass and volume.	dh
	(i)	Describe how the volume of a small irregular object can be measured.	
			[2]
	(ii)	A small tent has a mass of 4 kg and packs tightly into a bag of volume 16 dm ³ .	
		Calculate the density of the packed tent.	
		Show your working and state the formula that you use.	
		formula used	
		working	
			[2]
			[۷]
(b)	The	e tent of mass 4 kg is carried a vertical distance of 1000 m up a mountain.	
	Cal	culate the work done on the tent.	
	The	e gravitational field strength of the Earth is 10 N/kg.	
	Sho	ow your working and state the formula that you use.	
		formula used	
		working	
			[2]

(C)	acquired a negative static charge.
	Explain how this happened.
	[3]
(d)	After it rained, the outside of the tent became wet.
	Describe in terms of particles how this water can evaporate.
	[3]

4 Fig. 4.1 shows the bones and muscles associated with the elbow joint.

		Fig. 4.1	
(a)	Na	me structures A to D .	
	A		
	В		
	С		
	D		[2]
(b)		escribe how the biceps and the triceps work together to straighten the arm at the bow joint.	he
			 [3]
(c)	(i)	On Fig. 4.1, draw an accurate labelling line to show where synovial fluid is present and label it F .	nt, [1]
	(ii)	State the function of synovial fluid.	
			[1]

www.PapaCambridge.com (d) Nerve impulses are carried to the muscles by motor neurones. (i) Where is the cell body of a motor neurone found? (ii) Describe how the structure of a motor neurone is related to its function.

5 Fig. 5.1 shows an experiment similar to one carried out in the middle of the last cent

www.PapaCambridge.com A mixture of the gases methane, CH₄, ammonia, NH₃, and water vapour was placed in the flask. Electrical sparks provided energy which caused chemical reactions to occur.

The mixture of products can be analysed using paper chromatography.

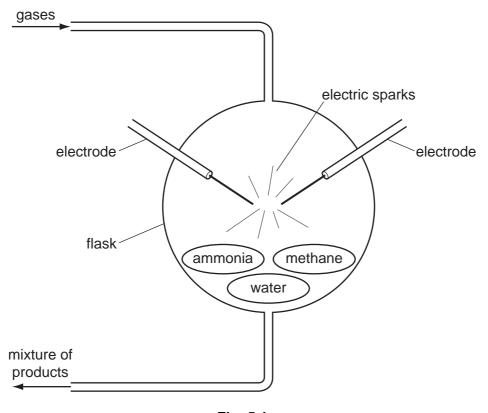
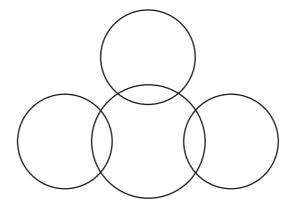



Fig. 5.1

(a) (i) Name the element which is combined in all three of the compounds present at the start of the experiment.

[1]

- (ii) Complete the bonding diagram below to show
 - the chemical symbols of the elements in a molecule of ammonia,
 - the arrangement of the outer electrons of each atom.

(b) (i) A student carried out paper chromatography to identify some of the produc the experiment in Fig. 5.1.

www.PapaCambridge.com Four known compounds, glycine, alanine, cysteine and lactic acid, were used for comparison.

His results are shown in Fig. 5.2.

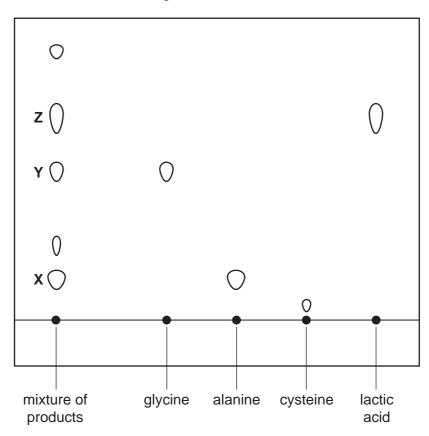
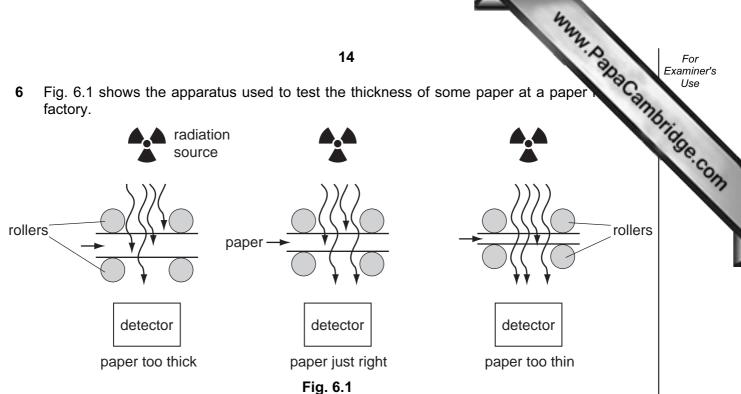


Fig. 5.2

Use the results in Fig. 5.2 to name compounds X, Y and Z, which were present in the mixture of products.

X is	
Y is	
Z is	
Explain how you identified X , Y and Z .	
	[2]

(ii) The graphical formula of compound Y is shown below.


www.PapaCambridge.com Write the molecular formula of compound Y. [1] (iii) Explain how the formula of compound Y shows that all three of the compounds in the mixture at the start of the experiment in Fig. 5.1 must have been involved in its formation. (c) Some of the compounds in the mixture of products from the experiment in Fig. 5.1 are amino acids. In the laboratory, amino acids can be made to undergo condensation polymerisation. Describe briefly what occurs when amino acids form condensation polymers. (d) A solution of lactic acid may be neutralised by reaction with alkali. Complete the word equation below which describes neutralisation of any acid by any alkali. ions →

BLANK PAGE

www.PapaCambridge.com

[2]

Fig. 6.1 shows the apparatus used to test the thickness of some paper at a paper 6 factory.

The radioactive source gives out beta radiation. The source is placed above the moving sheet of paper and the detector below it.

(a)	Name the part of an atom from which beta radiation comes.	
		[1]
(b)	Explain why alpha radiation and gamma radiation are both unsuitable for this test.	
	alpha radiation	
	gamma radiation	

(c) The readings on the detector over a period of eight seconds are given in Table 6.2.

Table 6.2

time in seconds	0	1	2	3	4	5	6	7	8
total count	0	80	160	240	330	420	530	660	810
count in 1 second interval	0	80	80	80	90	90			

(i)	Complete Table 6.2. [1]
(ii)	Use the data in Table 6.2 to describe what is happening to the thickness of the paper. Give a reason for your answer.
	[2]

www.PapaCambridge.com (d) Complete the flow chart using suitable words, to show the stages of gen electrical energy in a nuclear power station.

In the reactor core
undergoes
•
The released turns water into steam.
—
The steam drives a
, which turns
a producing
electrical energy.

[3]

(e) A transformer at a power station steps up the voltage from 25 000 V to 400 000 V.

Use the equation

$$\frac{V_p}{V_s} = \frac{N_p}{N_s}$$

to calculate the number of turns on the primary coil if there are 20 000 turns on the secondary coil.

Show your working.

7 Fig. 7.1 shows a yeast cell. Yeast is a kind of fungus.

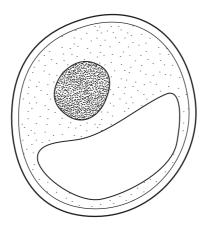


Fig. 7.1

(a)	Sta	te two differences between a yeast cell and an animal cell.	
	1.		
	2.		[2]
(b)	Sor	me yeast cells were added to a solution of glucose in a conical flask.	
		ile the yeast population was growing in the flask, bubbles of gas were produce in the solution. The gas was thought to be carbon dioxide.	∍d
	(i)	Describe how you could test the gas to confirm that it was carbon dioxide.	
			[2]
	(ii)	Explain why carbon dioxide was produced.	
			[2]

(c) The number of yeast cells in one cm³ of the solution described in (b) was me every hour for a period of 12 hours. Fig. 7.2 shows the results.

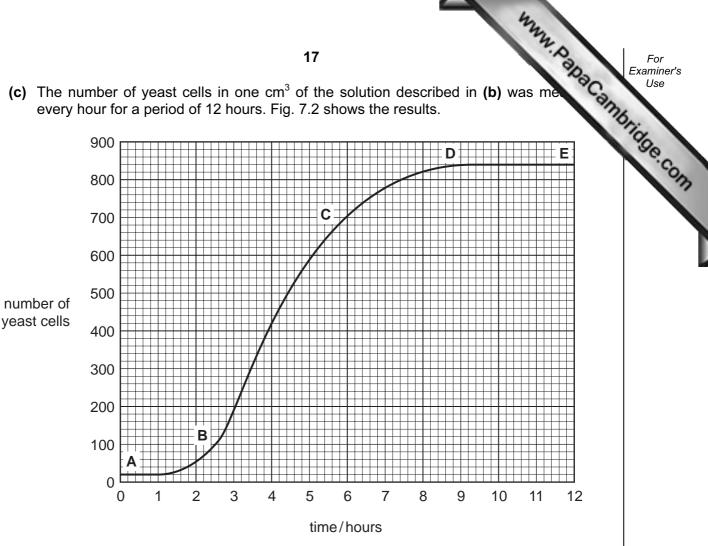
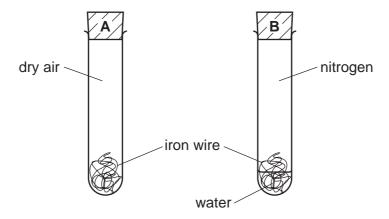


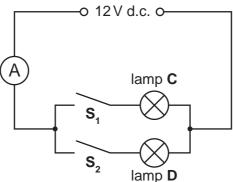
Fig 7.2

(i)	Between which points was the fastest rate of reproduction of the yeast?	
		[1]
(ii)	Between which points was the rate of reproduction equal to the death rate?	
		[1]
(iii)	On Fig. 7.2, mark the point at which a limiting factor began to affect the growth the yeast population.	of [1]
(iv)	Suggest one limiting factor that could be having this effect.	
		[1]
(v)	Outline how you could test your suggestion.	
		[2]

[2]

8 (a) Fig. 8.1 shows an experiment set up by a student to investigate the conditions for iron to rust.




Fig. 8.1

Explain whether or not the iron wire in each of tube A and tube B is expected to rust.
[3]
When the mineral chromite, $FeCr_2O_4$, is heated with carbon, an alloy of iron and chromium called ferrochrome is formed. The balanced equation for this reaction is shown below.
$FeCr_2O_4 + 4C \rightarrow Fe + 2Cr + 4CO$
ferrochrome
Why is it possible to conclude that the reaction above occurs at a very high temperature?

(b)

	The state of the s
	19 A. P.
Chi	romite is used to make the ionic compound chromium oxide, Cr_2O_3 .
	romite is used to make the ionic compound chromium oxide, Cr ₂ O ₃ . Is reacts with sulphuric acid to make an electrolyte containing chromium ions. This ed in a process which deposits a thin layer of chromium metal onto steel objects. The symbol and charge of an oxide ion is O ²⁻ .
(i)	The symbol and charge of an oxide ion is O ²⁻ .
	Deduce the charge on the chromium ions in Cr ₂ O ₃ .
	Explain your answer.
	[2]
(ii)	Suggest the word equation for the reaction between chromium oxide and sulphuric acid.
	[1]
(iii)	Chromium metal is deposited onto a steel object by making the object one of the electrodes in electrolysis.
	Explain why the steel object should be made the cathode in this electrolysis.
	[1]

Fig. 9.1 shows a circuit used to test two different lamps, **C** and **D**.

		lamp b	
		Fig. 9.1	
(a)	(i)	When switch \mathbf{S}_1 only is closed, a current of 2A flows through lamp \mathbf{C} .	
		Calculate the resistance of lamp C.	
		Show your working and state the formula that you use.	
		formula used	
		working	
			[2]
	(ii)	Calculate the energy transfer per second in lamp C when switch S ₁ only is closed.	
		formula used	
		working	
		[[2]
((iii)	When both switches $\mathbf{S_1}$ and $\mathbf{S_2}$ are closed, the ammeter reading is 6 A.	
		Calculate the current flowing through lamp D .	
			[1]

For Examiner's Use

(b) Fig. 9.2 shows how the current through lamp C varies if the applied voltage is ch.

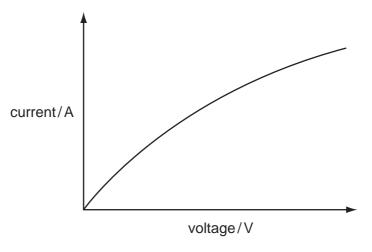


Fig. 9.2

If Ohm's Law is obeyed, the current through a component is directly proportional to the voltage across it.

- (i) On Fig. 9.2, draw a line to show the voltage / current relationship for a component which obeys Ohm's Law. [1]
- (ii) Suggest why the lamp C does not obey Ohm's Law when the voltage is increased.

(c) An electric food mixer has a 3 speed control switch and an on / off switch. produced using two identical resistors as shown in Fig. 9.3.

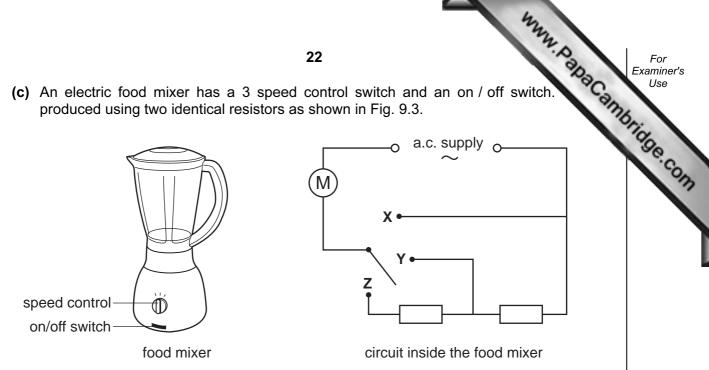


Fig. 9.3

- (i) The circuit diagram does not show the on / off switch. On the circuit drawn in Fig. 9.3, write the letter **S** to show where the switch should be.
- (ii) The speed control can be set on X, Y or Z. Which position gives the lowest speed and which position gives the highest speed? Explain your answer.

23

BLANK PAGE

www.PapaCambridge.com

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

DATA SHEET
The Periodic Table of the Elements

								Gre	Group								
_	=											≡	≥	>	>	=>	0
							T Hydrogen										4 He Helium
7 Li Lithium	Be Beryllium					•						11 Boron 5	12 C Carbon	14 N Nitrogen 7	16 Oxygen 8	19 Fluorine	20 Ne Neon
23 Na Sodium	24 Mg Magnesium 12											27 A1 Aluminium 13	28 Si Silicon	31 P Phosphorus 15	32 S uphur	35.5 C1 Chlorine	40 Ar Argon
39 K Potassium	40 Calcium	Scandium	48 T	51 Vanadium	52 Cr Chromium	Mn Manganese	56 Iran	59 Cobalt	59 Nickel	64 Cu Copper	65 Zn Zinc	70 Ga Gallium	73 Ge Germanium	AS Arsenic	79 Se Selenium	80 Br Bromine	84 K rypton
85 Rb Rubidium 37	88 St Strontium	89 × Yttrium 39	91 Zr Zirconium 40	93 Nb Niobium 41	96 Mo	Tc Technetium 43	20 101 Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver	112 Cd Cadmium 48	115 In Indium	SD 119	122 Sb Antimony 51	128 Te Tellurium 52	127 I odine	X X X X X X X X X X X X X X X X X X X
Caesium	137 Ba Barium 56	139 La Lanthanum 57 *	178 Hf Hafnium	181 Ta Tantalum	184 W Tungsten 74	186 Re Rhenium 75	190 OS Osmium 76	192 Ir 177	195 P Platinum 78	197 Au Gold	201 Hg Mercury	204 T 1 Thallium	207 Pb Lead 82	209 Bis Bismuth	Po Polonium 84	At Astatine 85	Radon 86
Fr Francium 87	226 Ra Radium 88	227 Ac Actinium 89															
*58-71 L	*58-71 Lanthanoid series 190-103 Actinoid series	l series eries	1	140 Ce	Pr Praseodymium	Neodymium	Pm Promethium	150 Sm Samarium	152 Eu Europium	157 Gd Gadolinium	159 Tb Terbium	162 Dy Dysprosium	165 Ho lmium	167 Er Erbium	169 T m Thulium	173 Yb Ytterbium	175 Lu Lutetium

				•		
roton (cimoto) cotor	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Αm
orom (atomic) number	06	91	92	93	94	92
	i					c

Key

old series cerum	Pr Praseodymium 59	Neodymium 60	Pm Promethium 61	Samarium 62	152 Eu Europium 63	Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium	Yb Ytterbium 70	Lutetium 71
a = relative atomic mass 232 X = atomic symbol b = proton (atomic) number 90	Pa Protactinium 91	238 U Uranium 92	Neptunium	Pu Plutonium 94	Am Americium 95	Cm Curium 96	BK Berkelium 97	Californium	Es Einsteinium 99	Fm Fermium	Mendelevium 101	Nobelium	Md No Lr Inswencium Nobelium Lawrencium 102

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).