

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Ortige Com

*	
7	
7	
6	
W	
∞	
ū	
Ν	
0	
4	
4	

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CO-ORDINATED SCIENCES

0654/02

Paper 2 (Core)

May/June 2007

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use			
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
Total			

This document consists of 23 printed pages and 1 blank page.

(a) Fig. 1.1 shows the arrangement of molecules of water when it is a solid (ice), 1 (water) and a gas (steam).

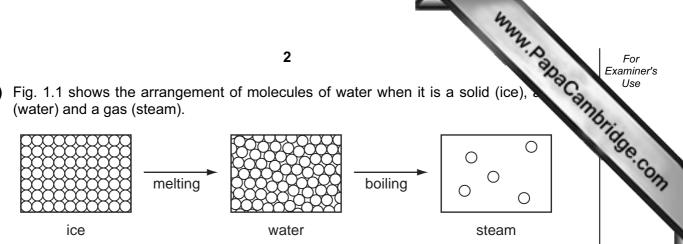


Fig. 1.1

Complete the table by putting ticks into the appropriate boxes.

state	molecules have least energy	molecules have most energy	molecules are least strongly attracted to each other	molecules occupy fixed positions
ice				
water				
steam				

[4]

(b)	A beaker	contains	warm	water.
-----	----------	----------	------	--------

Some of the water evaporates.

	[2]
Describe and explain what is happening to the molecules as the water evaporates.	

(c) Fig. 1.2 shows an ice cube with sides of 2 cm. The ice cube has a mass of 7.36 g.

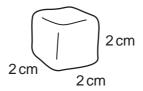


Fig. 1.2

Calculate the density of ice.

Show your working.

g/cm ³	[2]
9. 3.11	L

2 Fig. 2.1 shows the contents of the thorax and details of one alveolus.

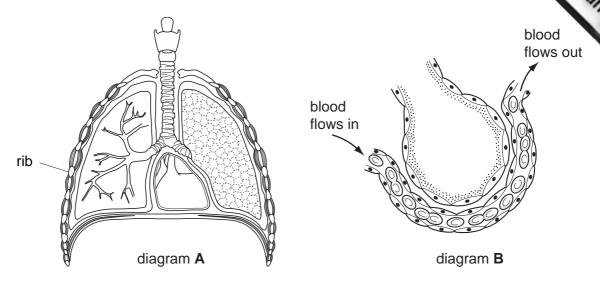


Fig. 2.1

- (a) On diagram **A**, write the letter **X** in a place where the alveolus in diagram **B** could be found. [1]
- **(b)** As air is drawn into the lungs, it flows through tubes lined with a tissue containing goblet cells and ciliated cells.

(i)	Explain the meaning of the term <i>tissue</i> .	
		[2]
		[4]
(ii)	On diagram A , write the letter Y where this tissue could be found.	[1]
(iii)	Explain how this tissue helps to prevent infections in the lungs.	
		[2]

		May	
		On diagram B, carefully draw an arrow to show where express due to	For Examiner's
(c)	(i)	On diadram b . carefully draw an arrow to show where oxyden moves dum	Use
	(ii)		Tridge C
		[1]	TH.
	(iii)	Explain one way in which the structures shown in diagram B help gas exchange to occur efficiently.	
		[2]	
			1

3 The following list shows some properties of the element copper.

electrical conductor shiny
high density sonorous
malleable unreactive

(a) Choose one property from the list which explains each of the following statements.

(i)	Copper metal sometimes occurs uncombined (native) in the Earth's crust.

[1]

(ii) Copper can be rolled into thin sheets.

••	
	[1]

- (iii) Copper is widely used in the form of wire.

 [1]
- **(b)** A student carried out an experiment involving the black solid, copper(II) oxide. Fig. 3.1 shows details of her experiment.

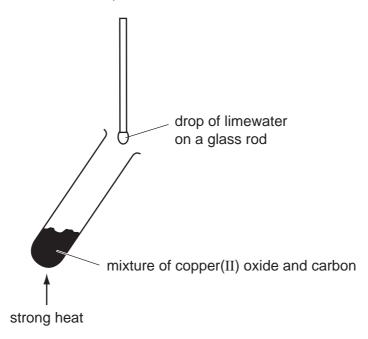


Fig. 3.1

During the reaction the student recorded the following observations.

observations

- 1. After much heating, the mixture suddenly glowed even when the bunsen burner was removed.
- 2. The drop of limewater went cloudy.
- 3. When the mixture stopped glowing it contained traces of a brown solid.

	(i)	State which observation, 1, 2 or 3, showed that an exothermic reaction had occurred.	İ
		[1]
	(ii)	Name the gas which is produced in this reaction.	
		[1]
	(iii)	Write a word equation for the reaction which occurred in the experiment in Fig. 3.1.	
		+ - + +	ː]
(c)		oper is a transition metal. State two properties of transition metals which are erent from those of alkali metals.	;
	1.		
	2.		
		[2]

(a) A car of mass 1200 kg is travelling forward at a constant speed of 20 m/s. Fig. 4.1 shows the driving force and the frictional force acting on the car.

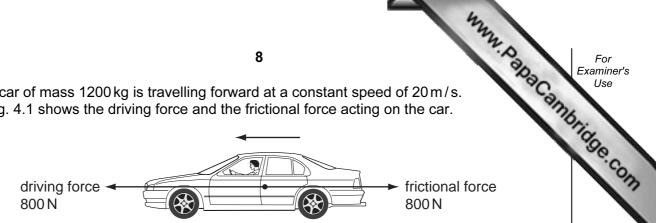


Fig. 4.1

(i)	Explain why the car does not accelerate.	
		[1]
(ii)	Calculate the distance travelled by the car in 30 seconds.	
	State the formula that you use and show your working.	
	formula used	
	working	
	m	[2]
(iii)	Calculate the work done by the driving force in 30 seconds.	
	State the formula that you use and show your working.	
	formula used	
	ioimala dood	
	working	

www.PapaCambridge.com (b) A pedestrian steps into the path of the moving car. Fig. 4.2 shows a graph of h speed of the car changes from the moment when the driver sees the pedestrian the car stops.

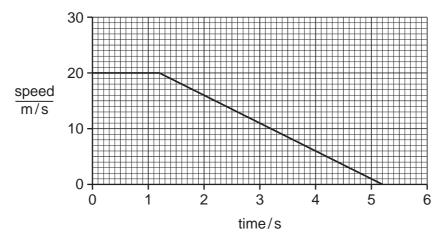


Fig. 4.2

How long does it take between the driver seeing the pedestrian and the brakes being applied?

time taken seconds explanation

Explain your answer.

www.PatraCambridge.com (c) A police car uses a siren and a blue light to alert people. (i) Explain why sound needs a medium, such as air, to travel through. (ii) How will the sound of the siren change if the amplitude of the sound waves emitted is increased? (d) The police communicate using radio waves. Both blue light and radio waves are part of the electromagnetic spectrum. (i) State **one** property which all electromagnetic waves have in common. [1] (ii) State one difference between blue light waves and radio waves.

S

Fig. 5.1 shows three bones from the arm and shoulder.

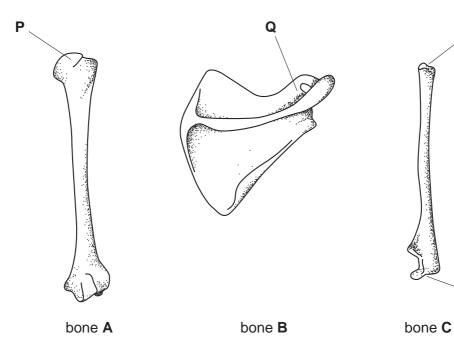


Fig. 5.1

(a)	(i)	Which bone, A , B or C , is the humerus?	
	(ii)		[1]
			[1]
(b)	Des	scribe how synovial fluid helps bones to move easily at a synovial joint.	
			 [1]
(c)		scribe one difference between the properties of bone and cartilage, and explain he helps them to carry out their functions.	WC
	diffe	erence	
	how	this relates to their functions	

		the transfer of the transfer o	
		toose and starch are carbohydrates. The chemical formula of glucose is $C_6H_{12}O_6$. State the total number of atoms which are combined in one molecule of glucose.	For Examiner's
(a)	Glu	cose and starch are carbohydrates.	Use
	(i)	The chemical formula of glucose is C ₆ H ₁₂ O ₆ .	This said
		State the total number of atoms which are combined in one molecule of glucose.	Se. COL
		[1]	13
	(ii)	Starch is a polymer which has been formed from glucose.	
		Explain the meaning of this statement.	L
		[2]	
(b)	Dro	tains are polymors which have been formed from amine soids	
(n)		teins are polymers which have been formed from amino acids. . 6.1 shows an amino acid called cysteine.	

Fig. 6.1

(i)	Give one reason why the molecule in Fig. 6.1 is not a carbohydrate.
	[1]
(ii)	Cysteine was present in the bodies of sea creatures that long ago were changed into petroleum (crude oil). This means that petroleum contains sulphur.
	Explain why sulphur should be removed from fuels made from petroleum.
	[3]

	For
Е	xaminer's
	1100

	13	For
<u> </u>		Examiner's Use
	icin is an analgesic which was first extracted from the bark and leaves of the e. Chemists converted salicin into the more effective drug, aspirin.	and.
(i)	Why would a person take an analgesic?	196
		[1]
(ii)	Suggest one reason why drugs like aspirin must be highly purified.	1
		[1]

In many power stations very hot steam under pressure is used to transfer energy to 7 turbines. The turbines then turn the generators.

The heat energy to change water into steam may come from nuclear fuel or a fossil fuel.

www.PapaCambridge.com When fossil fuels are burned to release their energy, waste products including carbon dioxide are produced.

(a)	(i)	Name the gas in the atmosphere which reacts with the elements in fossil fuels when they are burned.
		[1]
	(ii)	Waste gases from power stations contribute to higher levels of carbon dioxide in the atmosphere.
		What effect are these rising levels of carbon dioxide thought to have on the environment?
		[1]
(b)	(i)	Fossil fuels are non-renewable.
		Explain the meaning of the term <i>non-renewable</i> .
		[1]
	(ii)	Name one renewable energy resource.
		[1]
(c)	Gas	s fired power stations are said to be 60% energy-efficient.
	Ехр	lain what this means.
		[1]

[1]

www.PapaCambridge.com (d) After electricity has been generated, the voltage is increased before the electricity transmitted through power lines. (i) Name the device which increases the voltage of the electricity. (ii) Explain why it is advantageous to increase the voltage before the electricity is transmitted through power lines. [1] (e) A turbine in a gas-fired power station is made of a nickel alloy. (i) Explain the meaning of the term alloy. [1] (ii) Suggest a reason for using a nickel alloy rather than pure nickel.

8	(a)	(i)	Name a part of the cell in which chromosomes are found.
		(ii)	What is the chemical from which chromosomes are made?

If fruit flies are exposed to X-rays, mutations may take place in the cells of their testes and ovaries.

An experiment was carried out into the effect of different doses of X-rays on the sperm cells produced by male fruit flies. Fig. 8.1 shows the results.

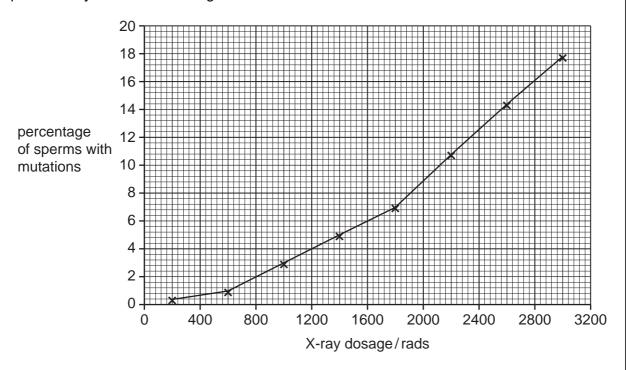


Fig. 8.1

(b) (i)	State what is meant by a <i>mutation</i> .
	[1]
(ii)	Describe the effect of increasing the X-ray dose on the percentage of mutated sperms.
	[2]

	Mary Mary	
	17	
(ii	i) If 200 sperms were exposed to an X-ray dosage of 1000 rads, use the great estimate the number that would have mutations. Explain how X-rays cause mutations.	Canne
(iv	r) Explain how X-rays cause mutations.	LU
		[2]
(c) F	ruit flies have four pairs of chromosomes in their cells.	
S	some of the mutations in the experiment above involved the loss of one chromosom	ıe.
(i) How many chromosomes are there in a normal sperm of a fruit fly?	
		[1]
(i	i) A fruit fly sperm that had lost one chromosome fertilised a normal egg.	
	How many chromosomes would there be in the zygote?	
		[1]

9

www.papaCambridge.com In many countries supplies of clean water for drinking are obtained from river water. (a) State two processes that are used to convert river water into water which is safe in humans to drink. 1. (b) Safe drinking water may still contain dissolved compounds which make the water hard. (i) Name a metallic element whose compounds cause hardness in water. (ii) Suggest a reason why some natural water supplies are hard and others are not. [1] (iii) Describe how a soap solution can be used to find out whether a sample of water is hard. [2] (iv) Some types of water are said to contain temporary hardness. Describe one way in which temporary hardness may be removed from water.

- (c) Some types of salt used to flavour food are mixtures of sodium chloride and potential chloride. Sodium chloride and potassium chloride are both ionic compounds.
 - (i) Describe and explain the difference between a sodium atom and a sodium ion.

	[2]

Sodium chloride and potassium chloride are both very soluble in water. Fig. 9.1 shows how the solubilities of these salts change with temperature.

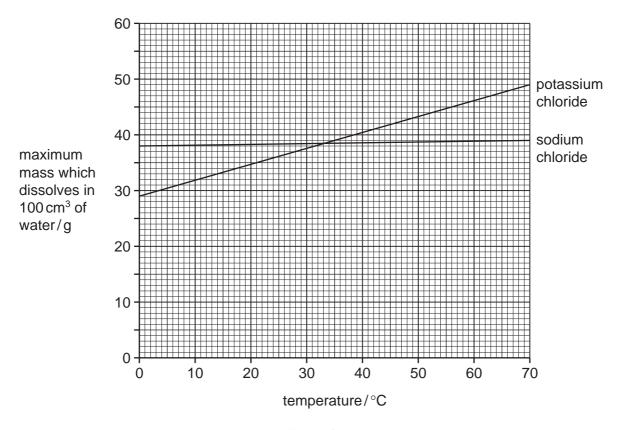


Fig. 9.1

(ii) What conclusions can be drawn from Fig. 9.1 about the effect of temperature on the solubilities of the two salts?

_______[2

(iii) At what temperature do the salts have the same solubility?

°C [1]

10 Fig. 10.1 shows a circuit containing four ammeters, A_1 , A_2 , A_3 and A_4 .

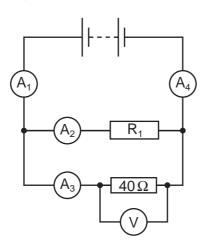


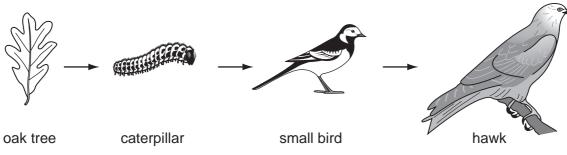
Fig. 10.1

Table 10.1 shows the readings on each ammeter.

Table 10.1

ammeter	reading on ammeter / amps
A ₁	0.5
A ₂	0.2
A ₃	0.3
A ₄	0.5

- (a) Electric current is a flow of electrical charge.
 - (i) State the name of the particle that carries charge around an electrical circuit.


[1]

(ii) State the unit of electrical charge.

[1]

(i)	Which one of the following statements about the resistor R_1 in Fig. 10.1 is C . Tick the correct box.	Cannot
	The resistance of \mathbf{R}_1 is less than 40 Ω .	Tage C
	The resistance of \mathbf{R}_1 is equal to 40 Ω .	on
	The resistance of \mathbf{R}_1 is greater than 40 Ω .	[1]
(ii)	Explain your answer.	_
		[1]
(i)	Write down the equation connecting resistance ${\bf R}$, potential difference ${\bf V}$ current ${\bf I}$.	and
		[1]
(ii)	Calculate the reading on the voltmeter.	
	Show your working.	
, <u>.</u>	V	[1]
(111)	State the potential difference across the power supply.	
	V	[1]
	(ii) (i)	Tick the correct box. The resistance of \mathbf{R}_1 is less than 40Ω . The resistance of \mathbf{R}_1 is equal to 40Ω . The resistance of \mathbf{R}_1 is greater than 40Ω . (ii) Explain your answer. (ii) Write down the equation connecting resistance \mathbf{R} , potential difference \mathbf{V} current \mathbf{I} . (iii) Calculate the reading on the voltmeter. Show your working.

11 The diagram shows a food chain.

y					2///		
ak tre	ее	caterpillar		small bird	7	hawk	
Nar	me the prin	nary consumer	in this foo	d chain.			
							[1]
Exp	olain one w	ay in which ha	awks are a	dapted to be p	redators.		
******							[2]
The	arrows in	the food chain	show the	direction of en	ergy flow.		
(i)			hich the oa	ak tree transfer	s energy from	sunlight into	energy
							[1]
(ii)	Name the	green pigmer	nt that abso	orbs energy fro	m sunlight.		
							[1]
An	oak tree ca	an be many me	etres tall.				
		explain how w	ater from	the soil is trans	sported up to th	ne leaves at	the top
	The (i) An Des of the control of th	The arrows in (i) Name the in glucose An oak tree can be carbe and of the tree.	Explain one way in which has The arrows in the food chain (i) Name the process by w in glucose. (ii) Name the green pigment An oak tree can be many me Describe and explain how w of the tree.	Explain one way in which hawks are an arrows in the food chain show the (i) Name the process by which the or in glucose. (ii) Name the green pigment that absolute the can be many metres tall. Describe and explain how water from of the tree.	Name the primary consumer in this food chain. Explain one way in which hawks are adapted to be present the food chain show the direction of en (i) Name the process by which the oak tree transfer in glucose. (ii) Name the green pigment that absorbs energy from the soil is transfer to the tree.	Explain one way in which hawks are adapted to be predators. The arrows in the food chain show the direction of energy flow. (i) Name the process by which the oak tree transfers energy from in glucose. (ii) Name the green pigment that absorbs energy from sunlight. An oak tree can be many metres tall. Describe and explain how water from the soil is transported up to the of the tree.	Name the primary consumer in this food chain. Explain one way in which hawks are adapted to be predators. The arrows in the food chain show the direction of energy flow. (i) Name the process by which the oak tree transfers energy from sunlight into in glucose. (ii) Name the green pigment that absorbs energy from sunlight. An oak tree can be many metres tall. Describe and explain how water from the soil is transported up to the leaves at

BLANK PAGE

www.PapaCambridge.com

The Periodic Table of the Elements DATA SHEET

		oυ Ę	o (0) ∈	_ _	_ _ uo	- w 2	c s		2 3 m
	0	Helium	20 Ne Neon	40 Ar Argon	36		Radon 86		175 Lu Lutetium
			19 F luorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine	At Astatine 85		Yb Ytterbium
	IΛ		16 O Oxygen 8	32 S Sulphur	79 Se Selenium 34	128 Te Tellurium	Po Polonium 84		169 Tm Thullum
	>		14 Nitrogen 7	31 P Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium
	//		12 C Carbon 6	28 Si icon	73 Ge Germanium 32	30 Tin 50	207 Pb Lead		165 Ho
	=		11 Boron 5	27 A1 Auminium 13	70 Ga Gallium 31	115 In Indium	204 T 1 Thallium		Dy Dysprosium
					65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb
					64 Copper	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium
dn					59 N ickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium
Group					59 Co Cobatt	103 Rh Rhodium	192 Ir Iridium		Samarium
		1 Hydrogen			56 Fe Iron	101 Ru Ruthenium 44	190 OS Osmium 76		Pm Promethium
					Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		Neodymium
					Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Praseodymium
					51 V Vanadium 23	93 Niobium 41	181 Ta Tantalum		Cerium
					48 T Titanium 22	91 Zr Zirconium 40	178 Hf Hafnium		
					Sc Scandium	89 ×	139 La Lanthanum 57 *	Ac Actinium 189	series eries
	=		9 Be Berylium 4	24 Mg Magnesium	40 Ca Calcium 20	Sr Strontium	137 Ba Barium 56	226 Ra Radium	*58-71 Lanthanoid series 190-103 Actinoid series
	_		7 Li Lithium 3	23 Na Sodium	39 K Potassium 19	85 Rb Rubidium 37	133 CS Caesium 55	Fr Francium 87	*58-71 Le
				-		-	-		—

oid series	S 40	1 ₄ 1	4 Z	Pm	150 Sm	152 Eu	157 Gd	159 Tb	¹⁶²	165 4	167 Er	169 Tm	173 Yb	175 Lu	
ı series	Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64		Dysprosium 66	67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71	
a = relative atomic mass	232	Č	238	1	ä	4	3	à	č		1	2	2	-	4
A = atomic symbol b = proton (atomic) number	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Amanicium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrencium 103	NO NO Lawrencium Nobelium Lawrencium 102 103
															D'
	The v	The volume of one mole of any gas is 24 dm ³ at room temperature and pressure (r.t.p.).	one mole	of any ga	ıs is 24 dr	n³ at rooi	m temper	ature and	pressure	(r.t.p.).					30.
														0	0
													•	an	1
														brit	
												1	90	-	
													CON		

Key

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.