

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Chemistry practical notes for this paper are printed on page 8.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
Total		

This document consists of 8 printed pages.

www.PapaCambridge.com 2 1 (a) The beaker labelled A contains raisins that have been immersed in a dilute solution overnight. Beaker B contains unsoaked raisins. (i) Remove one raisin from each beaker. Place them on the white tile. Draw the raisins in the spaces below. raisin B raisin A [2] (ii) Compare the appearance of the raisins. Describe what happened to the shape and size of raisin **A** while it was in the solution. Suggest why this change has occurred. [2] (iii) Explain the changes to raisin **A** by referring to the concentrations (water potentials) of the raisin cells and the solution in which raisin A was immersed. _____ [3] (b) The kidneys of animals can regulate the level of water and salts in their bodies by excreting urine. Healthy urine does not contain protein or sugar, but it does contain

The four solutions, **D**, **E**, **F** and **G** have been made in the laboratory so that they are chemically similar to urine samples from different people.

The four samples are

chloride ions.

- urine containing reducing sugar, from a diabetic patient,
- urine containing protein, from a patient with kidney failure,
- urine from a healthy person,
- a sample that is not genuine urine (fake sample).

You are going to identify the samples. For each test use 2 cm depth of sample in tube.

- www.papaCambridge.com (i) Test each solution with Benedict's reagent. Record the colour of each sample after testing, in Fig. 1.1.
- (ii) Test each solution with biuret reagent. Record the colour of each sample after testing in Fig. 1.1.

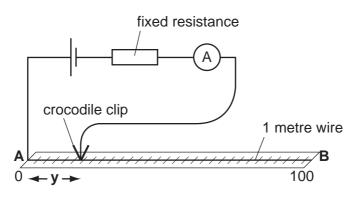
test on urine	sample D	sample E	sample F	sample G
Benedict's test				
protein test				

Fig. 1.1

(iii) Use the results from Fig. 1.1 to identify the sample from the patient with

diabetes,

kidney failure. [2]


[4]

Test the remaining two urine samples for the presence of chloride ions. The (iv) healthy person's urine contains chloride ions.

Describe the test and the expected result for the presence of chloride ions.

..... [1] Which was the real urine sample? [1]

www.papaCambridge.com You are going to find out how the current through a piece of wire varies with its leng 2 circuit has been set up for you and is shown in Fig. 2.1.

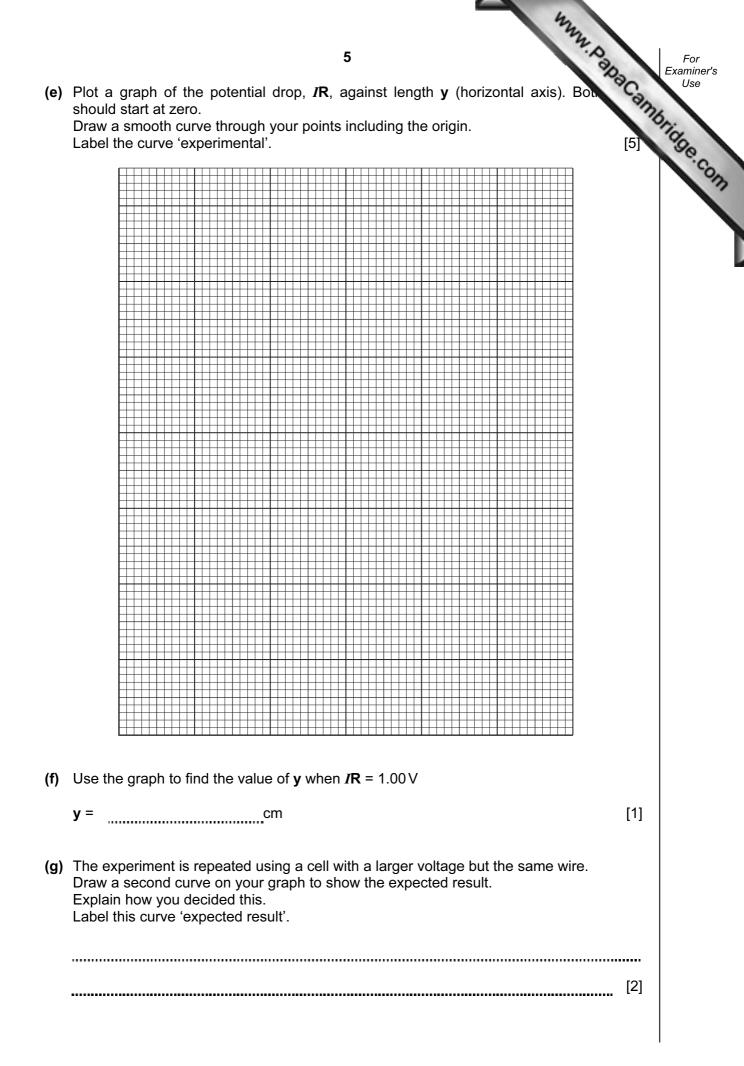
(a) S, the value of the resistance of one metre of the wire AB, has been given to you. State this value.

S = ohms [1]

[3]

- (b) Using the crocodile clip, complete the circuit by touching the wire at the 10.0 cm $(\mathbf{y} = 10 \text{ cm})$ mark on the ruler. Read the current I and record this value in Fig. 2.2.
- (c) Repeat this measurement of current for four further values of y between 20.0 and 90.0 cm. Record your measurements in Fig. 2.2.

length y /cm	resistance R /ohms	current I/amps	current x resistance <i>I</i> R/volts
10.0			


(d) (i) Calculate R the resistance of the wire for each length of y using the formula

$$\mathbf{R} = \frac{\mathbf{S} \times \mathbf{y}}{100} \; .$$

S is the value recorded above in (a). Write these values in the appropriate column of the table. [1]

(ii) Complete Fig. 2.2 by calculating *I***R**, the potential drop, for each value of **y**, to three significant figures. [2]

4

3 X, Y and Z are three colourless solutions. Carry out the following tests which will enal to suggest a name for each of these solutions.

Solution **P** is an indicator. It is colourless in acid solution and pink in alkaline solution.

www.papacambridge.com (a) Place about 1 cm³ of each solution X, Y and Z in separate test-tubes. Add two drops of solution **P** to each. Record your observations in the table.

		solution X	solution Y	solution Z	
	Sta	te your conclusion about eac	ch solution.		[1]
	solı	ution X			
	solı	ution Y			
	solı	ution Z			[2]
(b)	Car nar	e acid is known to be either h rry out the tests for a chlorid ne of the acid. Describe the t ed be described.	e and a sulphate as o	described on page 8 to	
	nar	ne of acid			[3]
(c)	(i)	Place about 1 cm ³ of solutidrops of solution X until the Record your observations.			cator P . Add
		observations			
					[1]
	(ii)	Repeat (c)(i) using solution			
	(11)				valions.
		observations			
					[2]

6

(d)	(i)	7 Place about 1 cm ³ of zinc sulphate solution in a test-tube. Add solution Y a little at a time until there is no further change. Record your observations.	For Examiner's Use
	(ii)	Repeat (d)(i) using solution Z in place of solution Y. observations	[2]
(e)	sol	ggest a name for ution Y ution Z	[2]

CHEMISTRY PRACTICAL NOTES

Test for anions

Test for anions	8 CHEMISTRY PRACTICAL NO	TES hhm. Babacambridge. Gettest result
anion	test	test result
carbonate (CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide produced
chloride (C <i>l</i> -) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
nitrate (NO ₃ ⁻) [in solution]	add aqueous sodium hydroxide then aluminium foil; warm carefully	ammonia produced
sulphate (SO ₄ ^{2–}) [in solution]	acidify then add aqueous barium chloride <i>or</i> aqueous barium nitrate	white ppt.

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
ammonium (NH_4^+)	ammonia produced on warming	-
copper(II) (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess, giving a colourless solution

Test for gases

gas	test and test results
ammonia (NH ₃)	turns damp litmus paper blue
carbon dioxide (CO ₂)	turns limewater milky
chlorine (Cl ₂)	bleaches damp litmus paper
hydrogen (H ₂)	"pops" with a lighted splint
oxygen (O ₂)	relights a glowing splint

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.