

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

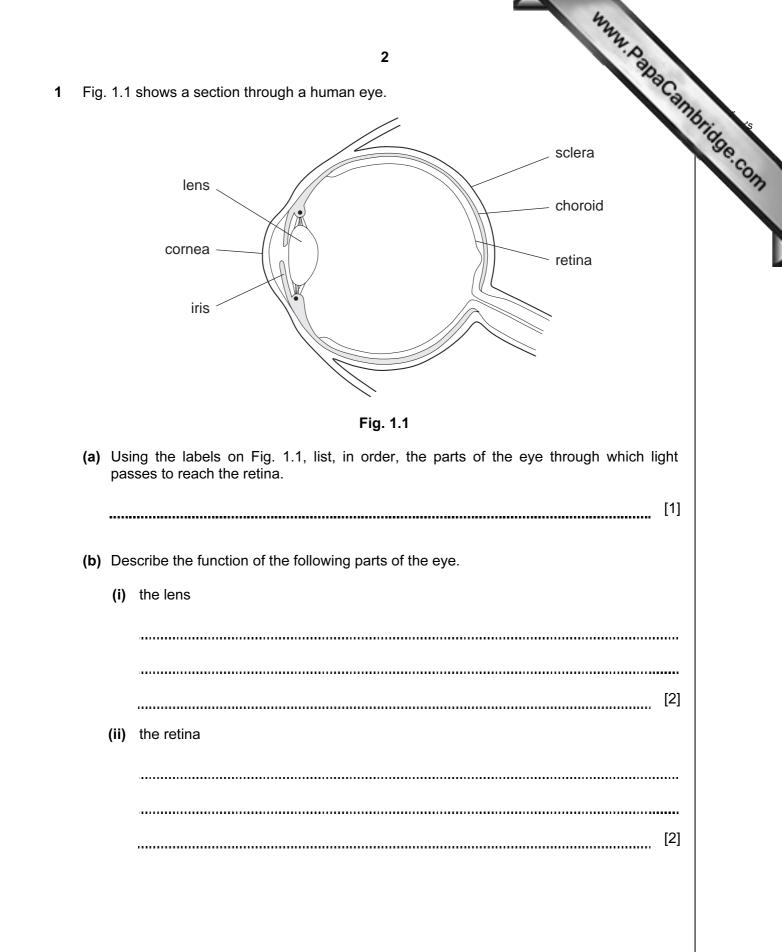
Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

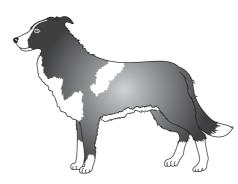
You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.


Answer **all** questions. A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.


For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
Total		

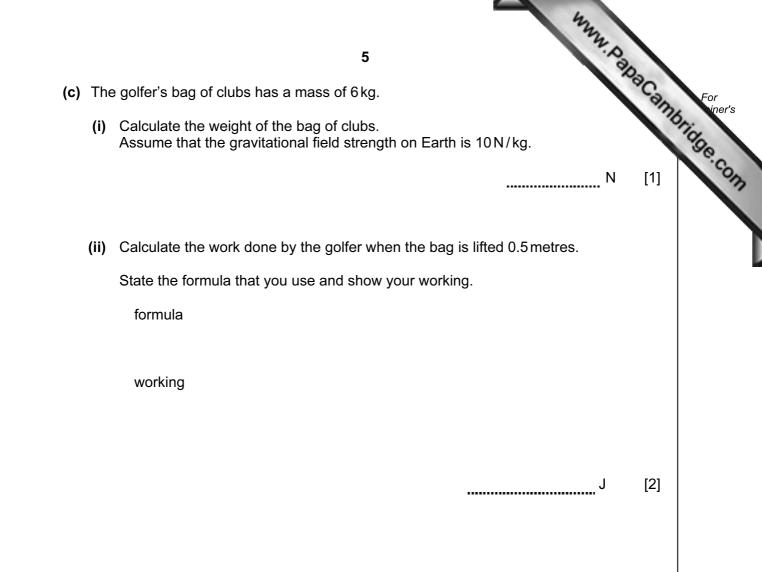
This document consists of 23 printed pages and 1 blank page.

www.papaCambridge.com (c) Collies are a breed of dog that have been bred to herd sheep and cattle. A rea allele, a, in collies causes the choroid to develop abnormally. This can cause blindin

(i) What is the phenotype of a collie with the genotype aa?

[1]

Breeders of collies try to make sure that none of the puppies that are born inherit this disease.

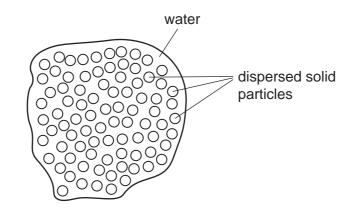

A collie breeder mates a male dog with the genotype AA, and a female dog with the genotype Aa.

(ii) Complete the genetic diagram to explain whether any of their puppies will inherit the choroid disease.

parents	AA	Aa	
gametes	all A	and	
offspring genotypes			
offspring phenotypes			 [3]

		4742	
	4	A.D.	agCambridge.
2 (a)	The mass of a golf ball is 40 g.		acan
	Its volume is 35 cm ³ .		Bride
	Calculate the density of the golf ball.		Se.
	State the formula that you use and show your working.		
	formula		
	working		
		g/cm ³	[2]
(b)	A golfer hits the ball.		
()			
	Calculate the momentum of the golf ball when it has a ve	elocity of 40 m/s.	
	State the formula that you use and show your working.		
	formula		
	working		

_____kg m/s [2]



www.PapaCambridge.com 6 Fig. 3.1 shows some natural processes which occur on and under the Earth's surface 3 rock A water flowing to sea sea rock B forming in layers and rock C then being pushed into formed from other rocks the earth molten rock by heat and pressure Fig. 3.1 (a) State which rock, A, B or C, was formed when a hot liquid cooled and changed into a solid. [1] (b) Rock **B** was formed when tiny pieces of solid were washed down into the sea by rivers and compressed. The tiny pieces of solid were produced from rock A whose surface had been damaged by weathering. (i) What general name is given to rocks like rock B? [1] (ii) Describe **one** way in which the surface of rock **A** could have been weathered. [2] (iii) Underline the word in the list below which correctly names the type of weathering you have described in part (ii). biological chemical physical [1]

www.papaCambridge.com (c) A sample of water flowing into the sea, as shown in Fig. 3.1, was taken to a lab for testing.

A student observed a drop of the water under a microscope.

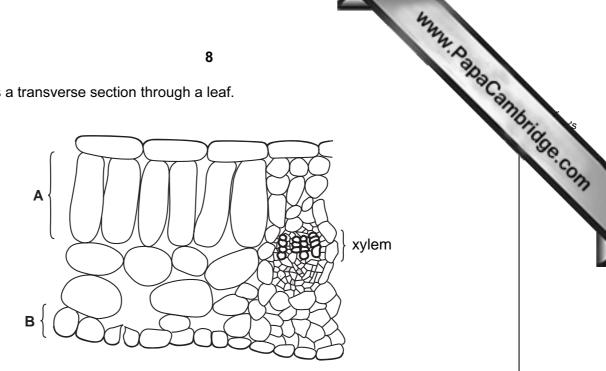
Fig. 3.2 shows a labelled diagram of what he saw.

(i) What general name is given to a mixture in which one substance is finely dispersed throughout another?

> [1]

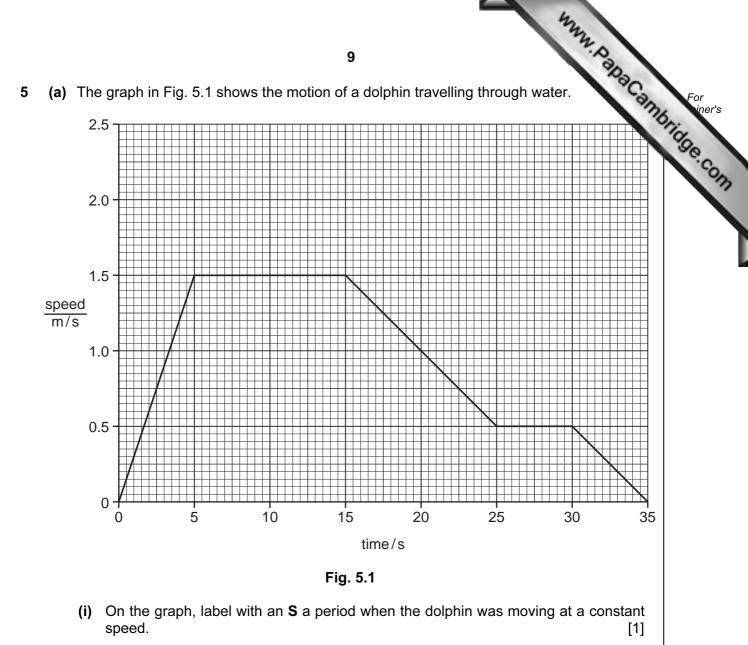
(ii) The student stated that the mixture he was observing was an example of an emulsion.

Explain whether or not the student's statement was correct.


.....

(iii) The student then added a few drops of acidified barium nitrate solution to some of the water. A white precipitate was formed.

What may be concluded about the water sample from this result?


[1]

(a)	(i)	Nam	ne the tissues labelled A and B .	
		Α		
		в		[2]
	(ii)	Stat	e two ways in which a cell in tissue A differs from an animal cell.	
		1.		
		2.		[2]
	(iii)	On F	Fig. 4.1, draw an arrow to show where carbon dioxide enters the leaf.	[1]
(b)	Sta	te two	o functions of xylem tissue in a leaf.	
	1.			
	2.			[2]

(ii) Describe the motion of the dolphin between 0s and 5s.

[1]

Т	а	b	le	5.	1
	u	v		ν.	

Table 5.1 shows the maximu humans and whales.	10 m and minimum frequencies	of sounds heard by do	andridue.com
	Table 5.1		1350
animal	maximum frequency / kHz	minimum frequency / Hz	On
dolphin	110	40	
human	20	20	
whale	1	2	

(i) What is meant by the term *frequency*?

	[1]
Which animal can hear	
(ii) the greatest range of frequencies,	[1]
(iii) the sound with the highest pitch?	[1]

(c) A dolphin locates an object by emitting a pulse of high frequency sound.

The pulse takes 0.2 s to reach the object and return to the dolphin after reflection. The speed of the sound pulse in water is 1500 m/s.

Calculate the distance between the dolphin and the object.

State the formula that you use and show your working.

formula

working

.....m [3]

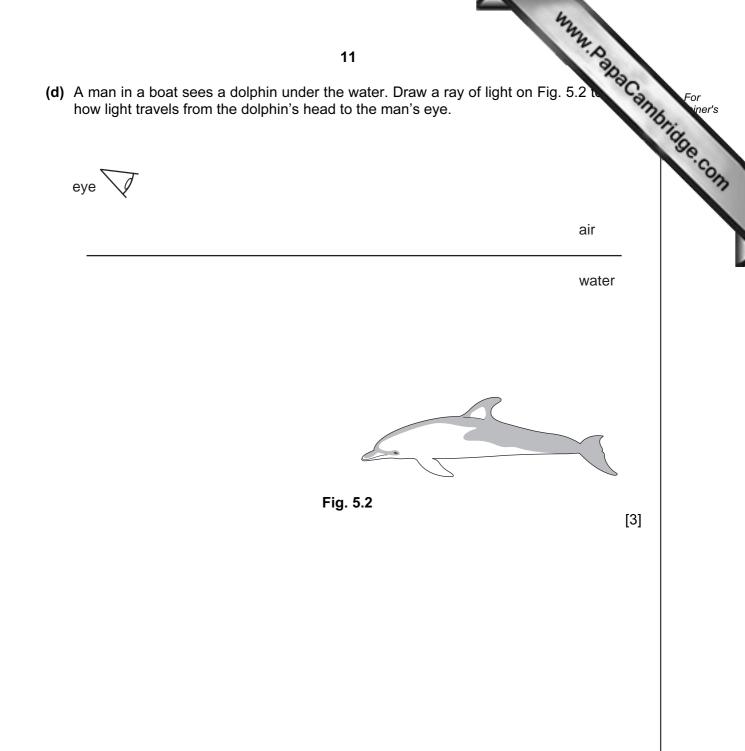


Fig. 6.1 shows diagrams of some atoms of elements in Group I of the Periodic Table. 6

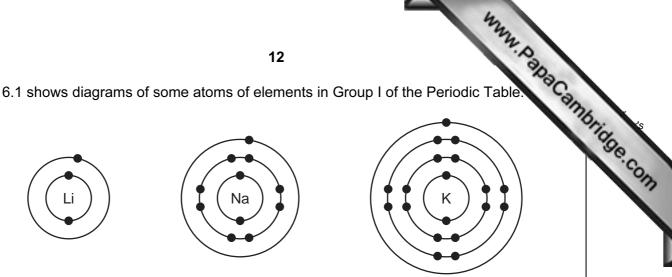


Fig. 6.1

(a) (i) Describe briefly two differences in the properties of lithium and potassium.

1.	
2.	
	[2]

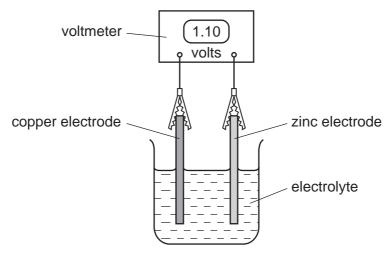
(ii) When sodium reacts with water, sodium atoms change into sodium ions. Draw a diagram of a sodium ion showing how all the electrons are arranged.

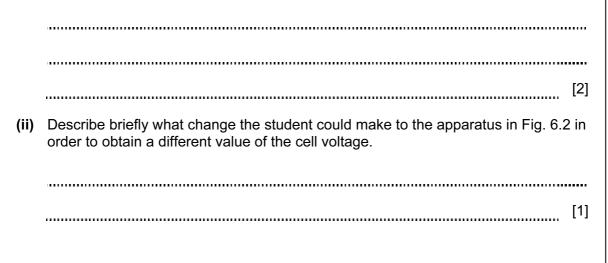
[1]

(iii) Rubidium is another metal in Group I. Explain why a rubidium ion has a single positive electrical charge.

[1]

www.papaCambridge.com (b) Fig. 6.2 shows apparatus a student used to investigate electrochemical cells.




Fig. 6.2

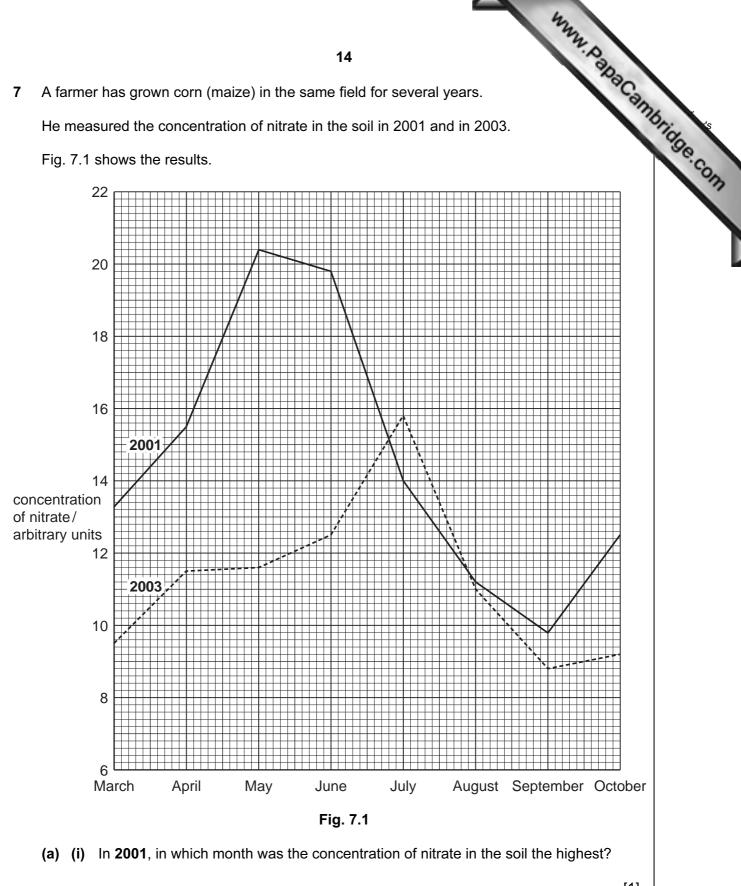

Table 6.1 shows some properties of substances which the student thought might be suitable to produce the electrolyte.

Table	6.1
-------	-----

substance	type of bonding solubility in water	
calcium carbonate	ionic	insoluble
glucose	covalent	soluble
magnesium sulphate	e ionic soluble	
silicon dioxide	covalent	insoluble

(i) State and explain which one of the substances in Table 6.1 is suitable for making the electrolyte.

[1]

Mary Mary	
15	200
 15 (ii) Describe two ways in which the nitrate concentration in the soil in 2003 different from the concentration in 2001. 1. 2. 	Jan
1	
2.	[2]
) The farmer was worried that the nitrate concentration in the field might be too low decided to try to increase it.	. He
(i) Explain why increasing the nitrate concentration in the field might help the farm	er.
	[2]
(ii) Suggest how he could increase the nitrate concentration in the field.	[2]
	[1]
The farmer feeds the maize to cattle. He sells meat from the cattle for people to eat	
(i) Draw a food chain to show this information.	
	[4]
(ii) What do the arrows in your food chain represent?	[1]
	[1]
I) When the maize plants are harvested, their roots are left in the soil.	
Describe how the carbon compounds in the roots will be turned into carbon dioxide released into the air.	and
	[2]

- 8 The bodywork of a car is usually made from steel.
 - (a) If part of the bodywork goes very rusty it is usually removed and replaced with plasm filler, before being painted.

www.papaCambridge.com A car mechanic can use a magnet to find out if parts of the bodywork of a car have been filled with plastic filler.

He tests three areas of a car by placing a magnet near the surface as shown in Fig. 8.1.

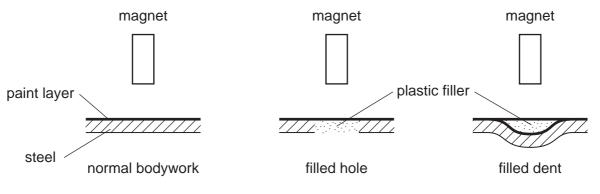


Fig. 8.1

(i) Complete the table.

area	effect on a magnet
normal bodywork	
filled hole	
filled dent	weakly attracted

[2]

(ii) What assumption have you made about the properties of plastic filler?

[1] (iii) Would this method work if the bodywork was made of aluminium? Explain your answer. [1] (iv) Suggest why the bodywork of some cars is made from aluminium rather than steel.

[1]

	NY NY
	17
(b)	Exhaust gases from a car engine leave the car through a solid steel exhaust pipe
	17 Exhaust gases from a car engine leave the car through a solid steel exhaust pipe Complete the sentences below about solids and gases. Use only the words solid or gas.
	In a, the particles are closer together than in a
	The forces of attraction between particles are stronger in athan in a
	When a is heated it will eventually turn into a liquid.
	In a, the particles can only vibrate and not move.
	Heat energy will travel through a by conduction.
	Heat energy will not travel through a by convection. [4]

- Heat energy is obtained when hydrocarbon fuels are burned. Natural gas, methane 9 important hydrocarbon fuel. Natural gas is extracted from the Earth's crust.
 - (a) State why natural gas is called a fossil fuel.

www.papaCambridge.com [1]

(b) Explain why the burning of hydrocarbon fuels is thought to be causing significant changes to our environment.

_____ [2]

(c) Biogas is an alternative source of methane made from biodegradable materials. Biogas may be obtained from landfill sites and reaction vessels called digesters.

Some information about two sources of biogas are shown in Table 9.1.

Table 9.1

	% of substances in	the biogas mixture
	biogas from a digester	biogas from landfill
methane	60 – 70	45 – 55
carbon dioxide	30 – 40	30 – 40
nitrogen	less than 1	5 – 15

(i) Describe a chemical test which would show that biogas contains carbon dioxide.

..... [2]

(ii) Use the information in Table 9.1 to suggest why 1.0 kg of biogas from a digester produces more heat energy when burned than 1.0 kg of biogas from a landfill site.

..... [2]

BLANK PAGE

		20	www.papacan					
Enzyr	inzymes are proteins that act as catalysts.							
(a) E	(a) Explain the meaning of the term <i>catalyst</i> .							
			[2]					
D	Amylase, protease and lipase are enzymes that digest food in the alimentary canal. Draw lines to link each enzyme with the food type that it digests, and the molecul that digestion produces.							
fc	ood digested	enzyme	molecules produced					
	fats	amylase	amino acids					
	proteins	protease	fatty acids and glycerol					
	starch	lipase	maltose (sugar)					
			[3]					
	A good diet contains fibre. Fibre cannot be digested. (i) Describe what happens to fibre that is eaten.							
			[2]					
(ii	(ii) Explain why fibre is an important part of a healthy diet.							
			[1]					
(iii	(iii) Name one food that is a good source of fibre.							
			[1]					

			44				
			21				
11	Stard	ch, o	cellulose and proteins are compounds found in plants.	Ca			
	(a)	(i)	21 cellulose and proteins are compounds found in plants. State the chemical symbols of the three elements which are combined toget in starch.	h			
	(ii)	The chemical bonds in starch are formed by atoms sharing pairs of electrons.	[1]			
			Name this type of chemical bonding.				
				[1]			
	• •		nts contain proteins, which are compounds containing nitrogen atoms. These ato e been obtained from gaseous nitrogen in the air by nitrogen fixation.	ms			
		(i)	Explain the meaning of the term nitrogen fixation.				
				[2]			
	,	::\	When some times of protein are bested in addium budrovide colution a rea				
	(ii) When some types of protein are heated in sodium hydroxide solution, a produced which turns damp red litmus paper blue.						
			Name this gas.				
				[1]			
	(i	ii)	A nitrogen atom has a <i>nucleon number</i> of 14.				
			Explain this statement.				
				[2]			
			te two important types of compound, other than those used for food, which may acted from plants.	be			
		1.					
		2.		[2]			

www.papacambridge.com 12 (a) The circuit in Fig. 12.1 was set up and the current measured by meters M_1 , M_2 , and M₅.

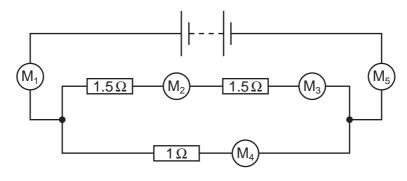


Fig. 12.1

- (i) What type of meter is M₁?
 - [1]
- (ii) The readings on M_1 , M_3 , M_4 , and M_5 are shown in Table 12.1.

Complete the table for M₂.

Table 12.1

(iii) Calculate the total resistance of the 1.5 Ω and 1.5 Ω resistors in series.

[1]

[1]

(iv) The voltage across the 1 Ω resistor is 3 V. Use the formula power = voltage x current

to calculate the power consumed in the 1 Ω resistor. Show your working.

_____W [1]

(b) The current flows through $M_1 \mbox{ for one minute.}$

Calculate the charge which has passed.

State the formula that you use and show your working.

formula

working

_____C [2]

				24				SNN.P.	and Cambride
	0	4 Helium 2	20 Neon 10 Agon 18 Argon	84 Krypton 36 131 131 Xe 54	Rn Radon 86		175 Lu Lutetium 71	Lawrencium 103	Cambri
	١١		19 9 Fluorine 35.5 35.5 Chlorine	80 Brannine 35 127 127 Iodine 53	At Astatine 85		173 Yb Ytterbium 70	Nobelium 102	93
	N		16 8 Oxygen 32 16 Sulphur 16	79 Selenium 34 128 128 Te llurium 52	Po Polonium 84		169 Tm Thulium 69	Md Mendelevium 101	
	>		14 Nitrogen 31 15 15	75 AS Arsenic 33 122 Sb Antimony 51	209 Bismuth 83		167 Er Erbium 68	100 Fermium	
	≥		6 Carbon 6 Carbon 28 28 28 28 14	73 Germanium 32 119 Sn 50	207 Pb Lead		165 Ho Holmium 67	Einsteinium 99	(r.t.p.).
	≡		11 5 Boron 5 27 27 13 A 1	70 Gaa 31 115 In 49 Indium	204 T 1 81		162 Dysprosium 66	Cf Californium 98	pressure
				B5 Z Inc 30 112 112 Cd 48 Cadmium	201 Hg ^{Mercury} 80		159 Tb ^{Terbium} 65	BK Berkelium 97	ture and I
				64 CU CU 29 Copper 29 AG 8108 47 Silver	197 Au Gold 79		157 Gd Gadolinium 64	96 Curium 96	The volume of one mole of any gas is 24 dm^3 at room temperature and pressure (r.t.p.).
dn				59 Nickel 28 106 Pd 46 Palladium	195 Pt ^{Platinum}		152 Eu Europium 63	Am Americium 95	ո ³ at room
Group				59 Cobalt 27 103 Rhodium 45	192 Ir Iridium 77		150 Sam arium 62	Plutonium 94	s is 24 dr
		¹ Hydrogen		56 Fee 26 101 44 Ruthenium	190 OS Osmium 76		Promethium 61	Neptunium 93	of any ga
			1	55 Manganese 25 Tc Hechnetum 43	186 Re Rhenium 75		144 Neodymium 60	238 Uranium 92	ne mole c
				52 Crhromium 24 Molybdenum 42	184 V Tungsten 74		141 Pr Fraseodymium 59	Pa Protactinium 91	lume of c
				51 Vanadium 23 93 93 Niobium	181 Ta Tantalum 73		140 Ce Cerium 58	232 Thorium 90	The vo
				48 Ttamium 22 91 81 Zrconium	178 Hf Hathium 72			nic mass ool ic) number	
				45 Scandium 21 89 89 39 Yttrium	139 La Lanthanum 57 *	227 Actinium 89 †	series eries	a = relative atomic mass X = atomic symbol b = proton (atomic) number	
	=		9 Beryllium 4 Beryllium 24 Mg Mg Mg 12	40 Calcium 20 88 Strontium 38	137 Ba Barium 56	226 Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series	a × = □ × = □ × = 0 =	
	_		3 Lithlum 3 Lithlum 23 23 23 23	39 Potassium 19 85 Rubidium 37	133 CS Caesium 55	Fr Francium 87	58-71 Lá 90-103 /	۴	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of