CANDIDATE NAME

CENTRE NUMBER

CANDIDATE NUMBER

CO-ORDINATED SCIENCES

0654/02
Paper 2 (Core)
May/June 2008
2 hours
Candidates answer on the Question Paper.
No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams, graphs, tables or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
A copy of the Periodic Table is printed on page 24.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
Total	

This document consists of $\mathbf{2 3}$ printed pages and $\mathbf{1}$ blank page.

1 Fig. 1.1 shows a section through a human eye.

Fig. 1.1
(a) Using the labels on Fig. 1.1, list, in order, the parts of the eye through which light passes to reach the retina.
(b) Describe the function of the following parts of the eye.
(i) the lens
\qquad
\qquad
\qquad
(ii) the retina
\qquad
\qquad
\qquad
(c) Collies are a breed of dog that have been bred to herd sheep and cattle. A re allele, a, in collies causes the choroid to develop abnormally. This can cause blind

(i) What is the phenotype of a collie with the genotype aa?

Breeders of collies try to make sure that none of the puppies that are born inherit this disease.

A collie breeder mates a male dog with the genotype AA, and a female dog with the genotype Aa.
(ii) Complete the genetic diagram to explain whether any of their puppies will inherit the choroid disease.

2 (a) The mass of a golf ball is 40 g .
Its volume is $35 \mathrm{~cm}^{3}$.
Calculate the density of the golf ball.
State the formula that you use and show your working.
formula
working
$\mathrm{g} / \mathrm{cm}^{3}$
[2]
(b) A golfer hits the ball.

Calculate the momentum of the golf ball when it has a velocity of $40 \mathrm{~m} / \mathrm{s}$.
State the formula that you use and show your working.
formula
working
(c) The golfer's bag of clubs has a mass of 6 kg .
(i) Calculate the weight of the bag of clubs. Assume that the gravitational field strength on Earth is $10 \mathrm{~N} / \mathrm{kg}$.

N
[1]
(ii) Calculate the work done by the golfer when the bag is lifted 0.5 metres.

State the formula that you use and show your working.
formula
working

3 Fig. 3.1 shows some natural processes which occur on and under the Earth's surface

Fig. 3.1
(a) State which rock, A, B or C, was formed when a hot liquid cooled and changed into a solid.
(b) Rock B was formed when tiny pieces of solid were washed down into the sea by rivers and compressed. The tiny pieces of solid were produced from rock \mathbf{A} whose surface had been damaged by weathering.
(i) What general name is given to rocks like rock \mathbf{B} ?
(ii) Describe one way in which the surface of rock \mathbf{A} could have been weathered.
\qquad
\qquad
\qquad
\qquad
(iii) Underline the word in the list below which correctly names the type of weathering you have described in part (ii).
physical
(c) A sample of water flowing into the sea, as shown in Fig. 3.1, was taken to a lab for testing.

A student observed a drop of the water under a microscope.
Fig. 3.2 shows a labelled diagram of what he saw.

Fig. 3.2
(i) What general name is given to a mixture in which one substance is finely dispersed throughout another?
(ii) The student stated that the mixture he was observing was an example of an emulsion.

Explain whether or not the student's statement was correct.
\qquad
\qquad
\qquad
(iii) The student then added a few drops of acidified barium nitrate solution to some of the water. A white precipitate was formed.

What may be concluded about the water sample from this result?
\qquad

4 Fig. 4.1 shows a transverse section through a leaf.

Fig. 4.1
(a) (i) Name the tissues labelled \mathbf{A} and \mathbf{B}.

A
B
(ii) State two ways in which a cell in tissue \mathbf{A} differs from an animal cell.

1. \qquad
2.

(iii) On Fig. 4.1, draw an arrow to show where carbon dioxide enters the leaf.
(b) State two functions of xylem tissue in a leaf.

1. \qquad
2.

5 (a) The graph in Fig. 5.1 shows the motion of a dolphin travelling through water.

Fig. 5.1
(i) On the graph, label with an \mathbf{S} a period when the dolphin was moving at a constant speed.
(ii) Describe the motion of the dolphin between 0 s and 5 s .
(b) Table 5.1 shows the maximum and minimum frequencies of sounds heard by de humans and whales.

Table 5.1

animal	maximum frequency $/ \mathrm{kHz}$	minimum frequency $/ \mathrm{Hz}$
dolphin	110	40
human	20	20
whale	1	2

(i) What is meant by the term frequency?
\qquad
\qquad

Which animal can hear
(ii) the greatest range of frequencies,
(iii) the sound with the highest pitch?
(c) A dolphin locates an object by emitting a pulse of high frequency sound.

The pulse takes 0.2 s to reach the object and return to the dolphin after reflection. The speed of the sound pulse in water is $1500 \mathrm{~m} / \mathrm{s}$.

Calculate the distance between the dolphin and the object.
State the formula that you use and show your working.
formula
working
(d) A man in a boat sees a dolphin under the water. Draw a ray of light on Fig. 5.2 how light travels from the dolphin's head to the man's eye.
eye

water

Fig. 5.2

6 Fig. 6.1 shows diagrams of some atoms of elements in Group I of the Periodic Table.

Fig. 6.1
(a) (i) Describe briefly two differences in the properties of lithium and potassium.

1. \qquad
\qquad
2. \qquad
(ii) When sodium reacts with water, sodium atoms change into sodium ions. Draw a diagram of a sodium ion showing how all the electrons are arranged.
(iii) Rubidium is another metal in Group I. Explain why a rubidium ion has a single positive electrical charge.
\qquad
\qquad
(b) Fig. 6.2 shows apparatus a student used to investigate electrochemical cells.

Fig. 6.2
Table 6.1 shows some properties of substances which the student thought might be suitable to produce the electrolyte.

Table 6.1

substance	type of bonding	solubility in water
calcium carbonate	ionic	insoluble
glucose	covalent	soluble
magnesium sulphate	ionic	soluble
silicon dioxide	covalent	insoluble

(i) State and explain which one of the substances in Table 6.1 is suitable for making the electrolyte.
\qquad
\qquad
\qquad
(ii) Describe briefly what change the student could make to the apparatus in Fig. 6.2 in order to obtain a different value of the cell voltage.
\qquad
\qquad

7 A farmer has grown corn (maize) in the same field for several years.
He measured the concentration of nitrate in the soil in 2001 and in 2003.
Fig. 7.1 shows the results.

Fig. 7.1
(a) (i) In 2001, in which month was the concentration of nitrate in the soil the highest?
(ii) Describe two ways in which the nitrate concentration in the soil in 2003 different from the concentration in 2001.

1. \qquad
2.

.
(b) The farmer was worried that the nitrate concentration in the field might be too low. He decided to try to increase it.
(i) Explain why increasing the nitrate concentration in the field might help the farmer.
\qquad
\qquad
(ii) Suggest how he could increase the nitrate concentration in the field.
\qquad
(c) The farmer feeds the maize to cattle. He sells meat from the cattle for people to eat.
(i) Draw a food chain to show this information.
(ii) What do the arrows in your food chain represent?
\qquad
(d) When the maize plants are harvested, their roots are left in the soil.

Describe how the carbon compounds in the roots will be turned into carbon dioxide and released into the air.
\qquad
\qquad
\qquad

8 The bodywork of a car is usually made from steel.
(a) If part of the bodywork goes very rusty it is usually removed and replaced with plas filler, before being painted.

A car mechanic can use a magnet to find out if parts of the bodywork of a car have been filled with plastic filler.

He tests three areas of a car by placing a magnet near the surface as shown in Fig. 8.1.

Fig. 8.1
(i) Complete the table.

area	effect on a magnet
normal bodywork	
filled hole	
filled dent	weakly attracted

(ii) What assumption have you made about the properties of plastic filler?
\qquad
(iii) Would this method work if the bodywork was made of aluminium?

Explain your answer.
\qquad
(iv) Suggest why the bodywork of some cars is made from aluminium rather than steel.
\qquad
(b) Exhaust gases from a car engine leave the car through a solid steel exhaust pip

Complete the sentences below about solids and gases. Use only the words solid or gas.

In a \qquad , the particles are closer together than in a \qquad .

The forces of attraction between particles are stronger in a \qquad than in a \qquad .

When a \qquad is heated it will eventually turn into a liquid.

In a \qquad the particles can only vibrate and not move.

Heat energy will travel through a \qquad by conduction.

Heat energy will not travel through a \qquad by convection.

9 Heat energy is obtained when hydrocarbon fuels are burned. Natural gas, methane important hydrocarbon fuel. Natural gas is extracted from the Earth's crust.
(a) State why natural gas is called a fossil fuel.
(b) Explain why the burning of hydrocarbon fuels is thought to be causing significant changes to our environment.
\qquad
\qquad
\qquad
(c) Biogas is an alternative source of methane made from biodegradable materials. Biogas may be obtained from landfill sites and reaction vessels called digesters.

Some information about two sources of biogas are shown in Table 9.1.
Table 9.1

	$\%$ of substances in the biogas mixture	
	biogas from a digester	biogas from landfill
methane	$60-70$	$45-55$
carbon dioxide	$30-40$	$30-40$
nitrogen	less than 1	$5-15$

(i) Describe a chemical test which would show that biogas contains carbon dioxide.
\qquad
\qquad
(ii) Use the information in Table 9.1 to suggest why 1.0 kg of biogas from a digester produces more heat energy when burned than 1.0 kg of biogas from a landfill site.
\qquad
\qquad
\qquad

10 Enzymes are proteins that act as catalysts.
(a) Explain the meaning of the term catalyst.
\qquad
\qquad
(b) Amylase, protease and lipase are enzymes that digest food in the alimentary canal.

Draw lines to link each enzyme with the food type that it digests, and the molecules that digestion produces.
food digested

protease

molecules produced
amino acids
fatty acids and glycerol
maltose (sugar)
(c) A good diet contains fibre. Fibre cannot be digested.
(i) Describe what happens to fibre that is eaten.
\qquad
\qquad
\qquad
(ii) Explain why fibre is an important part of a healthy diet.
\qquad
\qquad
(iii) Name one food that is a good source of fibre.

11 Starch, cellulose and proteins are compounds found in plants.
(a) (i) State the chemical symbols of the three elements which are combined togeth in starch.
\qquad
(ii) The chemical bonds in starch are formed by atoms sharing pairs of electrons. Name this type of chemical bonding.
(b) Plants contain proteins, which are compounds containing nitrogen atoms. These atoms have been obtained from gaseous nitrogen in the air by nitrogen fixation.
(i) Explain the meaning of the term nitrogen fixation.
\qquad
\qquad
\qquad
(ii) When some types of protein are heated in sodium hydroxide solution, a gas is produced which turns damp red litmus paper blue.

Name this gas.
(iii) A nitrogen atom has a nucleon number of 14 .

Explain this statement.
\qquad
\qquad
(c) State two important types of compound, other than those used for food, which may be extracted from plants.

1. \qquad
2.

12 (a) The circuit in Fig. 12.1 was set up and the current measured by meters M_{1}, M_{2}, and M_{5}.

Fig. 12.1
(i) What type of meter is M_{1} ?
\qquad
(ii) The readings on M_{1}, M_{3}, M_{4}, and M_{5} are shown in Table 12.1.

Complete the table for M_{2}.
Table 12.1

$M_{1}=4 \mathrm{~A}$
$M_{2}=$
$M_{3}=1 \mathrm{~A}$
$M_{4}=3 \mathrm{~A}$
$M_{5}=4 \mathrm{~A}$

(iii) Calculate the total resistance of the 1.5Ω and 1.5Ω resistors in series.
(iv) The voltage across the 1Ω resistor is 3 V .

Use the formula
power = voltage x current
to calculate the power consumed in the 1Ω resistor.
Show your working.
(b) The current flows through M_{1} for one minute.

Calculate the charge which has passed.
State the formula that you use and show your working.
formula
working

Group																		N
1	II											III	IV	V	VI	VII	0	
												${ }_{5} \begin{gathered}\text { 11 } \\ \text { B } \\ \text { Bronn }\end{gathered}$	${\underset{6}{\text { Catoon }}}_{\mathrm{C}^{12}}$	${ }_{7}{ }^{\text {Nitrogen }}$	${ }_{8}{ }_{8}^{\text {oxgen }}$			
													$\begin{array}{r} 28 \\ { }_{14}^{28} \\ \text { Silon } \\ \hline \end{array}$		$\begin{gathered} 32 \\ { }_{16} \text { Suphar } \\ \mathbf{S} \\ \hline \end{gathered}$			
$\underset{\substack{39 \\ \text { Poassum } \\ 19}}{\substack{\text { Pa } \\ \hline}}$	${ }_{\substack{40 \\ \text { Cacium } \\ \text { Ca }}}^{\substack{ \\\hline}}$		$\begin{gathered} 48 \\ { }_{22}^{\text {Tranium }} \end{gathered}$	$\underset{2_{2}}{\substack{51 \\ \text { Vandium } \\ \hline}}$		$\begin{gathered} 55 \\ \left.\begin{array}{c} \text { Mang } \\ 25 \\ 25 \end{array}\right) \end{gathered}$	$\begin{array}{r} 56 \\ { }_{26} \mathrm{Fe} \\ \text { ron } \end{array}$	$\begin{gathered} 59 \\ \text { Co } \\ \text { Cobath } \end{gathered}$	$\begin{array}{\|c} 59 \\ { }_{28} \begin{array}{c} \text { Nicelel } \\ \hline \end{array} \\ \hline \end{array}$	${ }_{\substack{\text { coper }}}^{\mathrm{Cu}_{\mathrm{Cu}}}$	$\begin{array}{r} 65 \\ \text { Zn } \\ \text { Znc } \end{array}$		$\begin{gathered} 73 \\ \left.\begin{array}{c} \text { Geerenaium } \\ 32 \end{array} \right\rvert\, \end{gathered}$			$\begin{gathered} 80 \\ \mathrm{Br} \\ 350 \\ \text { Bronine } \end{gathered}$		
85 $\mathbf{R b}$ Rubidium 37	$\begin{array}{\|c\|} 88 \\ \mathrm{Sr} \\ \text { Strontium } \end{array}$	$\underset{{ }_{39}}{\substack{89 \\ \mathbf{Y} \text { Ytrium }}}$	$\begin{gathered} 91 \\ \mathbf{Y r} \\ \text { Ziroonium } \end{gathered}$			$\begin{gathered} \mathrm{Tc} \\ \text { Teemneium } \\ 43 \end{gathered}$		$\begin{array}{r} 103 \\ \text { Rh } \\ \text { Rhhodium } \end{array}$		$\begin{array}{r} 108 \\ \text { Ag } \\ \text { A7 iver } \end{array}$		${ }_{49} \begin{gathered} 115 \\ \text { Indium } \\ \hline \text { In } \end{gathered}$	$\begin{array}{r} 119 \\ \mathrm{Sn}_{\mathrm{TIn}} \\ \hline \end{array}$		$\begin{gathered} 128 \\ \mathrm{Te} \\ 52^{\text {Tellurum }} \end{gathered}$	$\underset{53}{\substack{127 \\ \text { I Dodine }}} \begin{gathered} \text { I } \\ \hline \end{gathered}$	$\begin{array}{r} \begin{array}{r} 131 \\ \mathrm{Xe} \\ \text { Xenon } \end{array} \\ \hline \end{array}$	
	$\begin{array}{r} 137 \\ \text { Ba } \\ 56 \text { Baium } \\ \hline \end{array}$			$\begin{array}{r} 181 \\ \mathrm{Ta} \\ \text { Tanataum } \\ \hline 73 \end{array}$	$\begin{gathered} 184 \\ \underset{7_{4}^{\text {tungsen }}}{ } \end{gathered}$			$\begin{gathered} 192 \\ \mathrm{Ir} \\ 77^{\text {lidium }} \end{gathered}$		$\begin{array}{r} 197 \\ \text { Au } \\ \text { fold } \end{array}$		$\begin{array}{\|c} 204 \\ \mathrm{Cl}_{81}^{\text {Thalium }} \end{array}$	$\begin{array}{\|r} 207 \\ { }_{82} \text { Pbad } \\ \hline \end{array}$	$\begin{array}{\|c} 209 \\ \text { Bi } \\ \text { Bismuth } \\ \hline \end{array}$	$\begin{gathered} \text { Po } \\ 840 \text { Polonium } \\ \hline \end{gathered}$	$\underset{{ }_{85}}{\substack{\text { Atsaine }}}$	$\underset{86}{\substack{\text { fadon }}}$	
$\underset{87}{\mathrm{Francium}}$	$\begin{array}{r} 226 \\ \text { Ra } \\ \text { Radium } \end{array}$																	
*58-71 Lanthanoid series †90-103 Actinoid series						$\begin{gathered} 144 \\ \text { Nd } \\ \text { Neodymum } \\ 60 \end{gathered}$	$\underset{\substack{\text { Pronetium } \\ 61}}{\mathrm{Pr}}$	$\begin{gathered} 150 \\ \text { Sm } \\ \text { Samarium } \\ 62 \end{gathered}$			$\begin{gathered} 159 \\ \mathrm{~Tb} \\ 65 \end{gathered}$			$\begin{gathered} 167 \\ \text { Er } \\ \text { EFbium } \\ \hline \end{gathered}$	$\begin{gathered} 169 \\ \text { TTm }_{\text {Thuium }} \end{gathered}$		$\begin{array}{r} 175 \\ \text { Lu } \\ 71 \text { Luefium } \end{array}$	
Key		$\begin{aligned} & a=\text { relative atomic mass } \\ & x=\text { atomic symbol } \\ & b=\text { proton (atomic) number } \end{aligned}$			$\begin{gathered} \mathrm{Pa} \\ \substack{\text { Procaciuium } \\ 91} \\ \hline 1 \end{gathered}$	${\underset{92}{\text { Uranium }}}_{238}^{\mathbf{U}^{2}}$	$\underset{\substack{\text { Neppuium } \\ 93}}{\mathbf{N o}}$	$\underset{\substack{\text { Putuonium } \\ 94}}{\substack{\text { Pu }}}$	$\underset{{ }_{95}^{\text {Amenicium }}}{\mathbf{A m}}$	$\underset{96}{\substack{\text { Curium }}}$	$\begin{array}{\|c} \text { BK } \\ \text { Beekelium } \\ 97 \end{array}$	$\underset{\substack{\text { galforium } \\ 98}}{\text { Cf }}$		$\begin{gathered} \text { Fm } \\ \text { Femium } \\ 100 \end{gathered}$	$\begin{array}{\|c} \substack{\text { Md Mdelevium } \\ 101 \\ 101} \\ \hline \end{array}$	$\begin{array}{\|c} \text { No } \\ \text { Nobelium } \\ 102 \end{array}$		

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.).
$\begin{aligned} & \text { DATA SHEET } \\ & \text { The Periodic Table of the }\end{aligned}$
$\begin{aligned} & \text { DATA SHEET } \\ & \text { The Periodic Table of the Elements }\end{aligned}$

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

