www.PapaCambridge.com

Location Entry Codes

As part of CIE's continual commitment to maintaining best practice in assessment, CIE uses different variants of some question papers for our most popular assessments with large and widespread candidature. The question papers are closely related and the relationships between them have been thoroughly established using our assessment expertise. All versions of the paper give assessment of equal standard.

The content assessed by the examination papers and the type of questions is unchanged.

This change means that for this component there are now two variant Question Papers, Mark Schemes and Principal Examiner's Reports where previously there was only one. For any individual country, it is intended that only one variant is used. This document contains both variants which will give all Centres access to even more past examination material than is usually the case.

The diagram shows the relationship between the Question Papers, Mark Schemes and Principal Examiners' Reports that are available.

Question Paper

Introduction First variant Question Paper Second variant Question Paper

Mark Scheme

Introduction
First variant Mark Scheme
Second variant Mark Scheme

Principal Examiner's Report

Report
Introduction
First variant Principal Examiner's Report
Second variant Principal Examiner's Report

Who can I contact for further information on these changes?

Please direct any questions about this to CIE's Customer Services team at: international@cie.org.uk

The titles for the variant items should correspond with the table above, so that at the top of the first page of the relevant part of the document and on the header, it has the words:

• First variant Question Paper / Mark Scheme / Principal Examiner's Report

or

Second variant Question Paper / Mark Scheme / Principal Examiner's Report

as appropriate.

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.PapaCambridge.com

÷	
)	
•	
J	
J	
1	
•	
·	
,	
_	

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

CO-ORDINATED SCIENCES

0654/31

Paper 3 (Extended)

May/June 2009

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 28.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 25 printed pages and 3 blank pages.

1 (a) A student investigated how a change in potential difference across a lamp affect current flowing through it.

She used wires to connect the components shown in Fig. 1.1 to make a circuit.

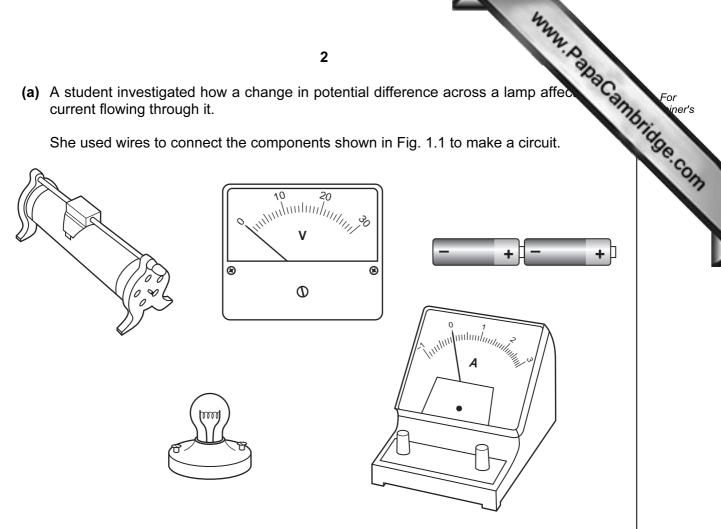


Fig. 1.1

(i) Using the correct symbols, draw a diagram to show the circuit she used.

		[2]
(ii)	Explain why the variable resistor is included in the circuit.	
		[1]

er results are shown in T	3 able 1.1.	W	AM. Panacan For iner's
	Table 1.1		THE ME'S
potential difference across lamp/V	current through lamp/A	resistance of lamp filament/Ω	Se. COM
4	1.2	3.3	
8	1.5		
12	1.7	7.1	

Complete the table by calculating the missing resistance and writing your answer in the empty box.

State the formula that you use and show your working.	
formula	

working

(iv) The student concluded that the relationship between potential difference and current did not correspond to Ohm's law. Explain why the relationship between potential difference and current for the lamp did not correspond to Ohm's law.

[2]

www.papaCambridge.com (b) Fig. 1.2 shows a wire moving upwards between the poles of two magnets. The the wire are connected to a sensitive ammeter. The ammeter shows the indu current.

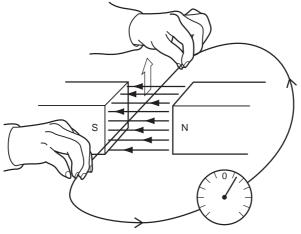


Fig. 1.2

(i) Draw on the ammeter in Fig. 1.3 the reading obtained if the wire was moved twice as quickly in the same direction.

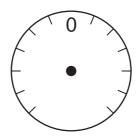


Fig. 1.3

[1]

(ii) Draw on the ammeter in Fig. 1.4 the reading obtained if the wire was moved in the opposite direction.

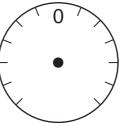


Fig. 1.4

[1]

(iii) Suggest why the ammeter must be a sensitive ammeter.

(iv) Name a device which uses this principle of inducing an electric current when a wire moves in a magnetic field.

[1	1
 ٠.	-

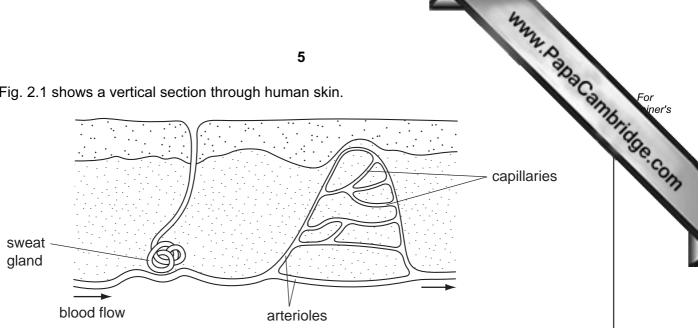


Fig. 2.1

(a) Describe how each of the following structures helps to lower the temperature of the body when it becomes too hot.

(i)	sweat gland	
		[2]
(ii)	arterioles	
		••••
		[3]

(b) A man ran steadily on a running track for 60 minutes. The air temperature was 1

www.PapaCambridge.com Fig. 2.2 shows his core temperature (the temperature inside his body) before, during and after the run.

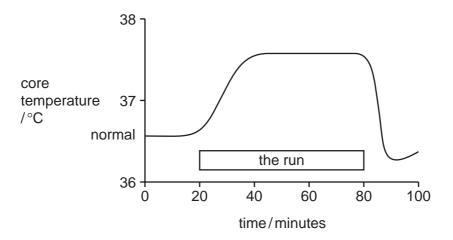


Fig. 2.2

(i)	Explain why the man's core temperature increased while he was running.
	rol
	[2]
(ii)	Suggest why his core temperature dropped below normal when he stopped running.
	[2]
(iii)	When a runner has finished a marathon, a shiny silver-coloured blanket is often draped over his body. This helps to prevent his body temperature from dropping below normal.
	Explain why this type of blanket is used, rather than a non-shiny dark-coloured one.
	[1]

	May	
	7	
(c)	The skin has an important role in making vitamin D, which it does when sunligonto it.	Cann
	Explain the importance of vitamin D in the body.	
		[2]

For iner's

3

Foo	od colourings are natural or synthetic dyes added to make food look more attractive
(a)	Describe the difference between natural and synthetic dyes.
	[1]
(b)	Fig. 3.1 shows a piece of cloth which is stained with food colouring.
	Fig. 3.1
	The cloth is washed in water containing soap solution.
	Describe how soap molecules help to remove stains from the cloth. You may wish to draw some simple diagrams to help you answer this question.

For iner'

[3]

	For	
•	Į OI	
	ine	~
	WIE	ıs

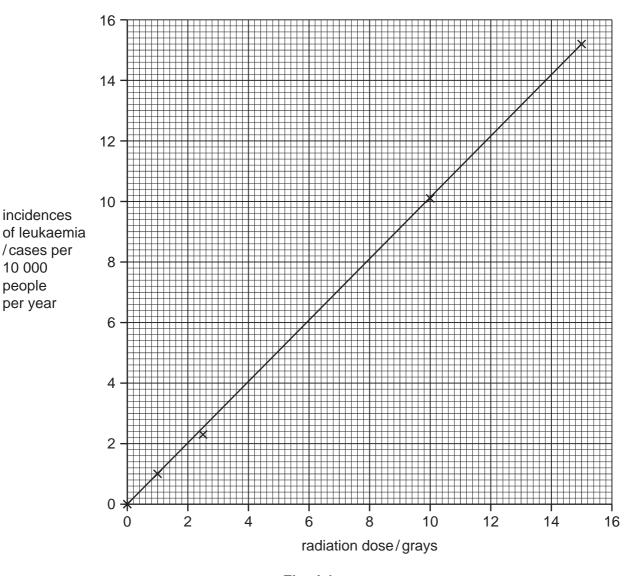
- (c) Some water supplied to houses contains calcium hydrogencarbonate, Ca(When heated, calcium hydrogencarbonate undergoes thermal decomposition.
- www.PapaCambridge.com (i) Complete the symbolic equation below which describes the thermal decomposition of calcium hydrogencarbonate.

$$Ca(HCO_3)_2 \rightarrow$$

[2]

(ii) The ionic charge of a calcium ion is 2+. Deduce the ionic charge of a hydrogencarbonate ion.

Show how you obtained your answer.


	[2]

www.PapaCambridge.com (a) Many people have survived accidents where they have been exposed to radiation from radioactive materials. Such exposure can have serious effects on health.

The table and graph show how the dose (amount) of radiation received is linked to a type of cancer called leukaemia. The radiation dose is measured in units called grays.

Table 4.1

radiation dose/grays	incidences of leukaemia/cases per 10 000 people per year
1.0	1.0
2.5	2.3
5.0	
10.0	10.1
15.0	15.2

10 000 people per year

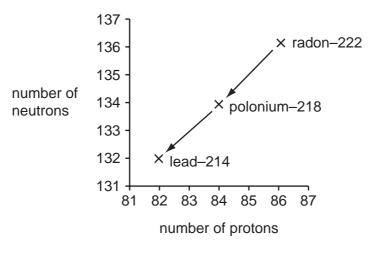
Fig. 4.1

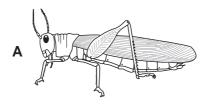
	11 WWW. Pa	
(i)	The result for 5.0 grays has been missed out of the table.	For
	Use the graph to help you fill in the missing value in the table.	non ners
(ii)	What is the relationship between the ionising radiation and the incidence of leukaemia?	of Se.com
		1]

(b) Two types of nuclear radiation from naturally occurring sources are alpha and beta. They can be identified by their different penetrating powers.

Describe how you could distinguish between alpha and beta radiation by their penetrating powers. ______[1]

(c) Radon-222 (222Rn) is a radioactive element. The chart in Fig. 4.2 shows the number of protons and neutrons in the nuclei of the elements formed when radon decays.




Fig. 4.2

(i)	Describe how the graph shows that radon-222 (222Rn) and polonium-218 (218P) emit alpha particles.	' 0)
		••••
		[2]

	the state of the s
	State why radon and polonium are different elements. Radioactive decay can also produce gamma radiation.
(ii)	State why radon and polonium are different elements.
:::\	Dedicactive desay can also produce commo rediction
iii)	Radioactive decay can also produce gamma radiation.
	Explain why gamma emission does not result in the formation of a new element.
	[1]
iv)	Radon-222 has a half-life of 4 days.
	Explain what is meant by the term half-life.
	[1]
(v)	1 mg of radon-222 is allowed to decay.
	Calculate after how many days there would be 0.125 mg of radon-222 remaining.
	Show your working.
	[2]

Please turn over for Question 5.

www.papaCambridge.com

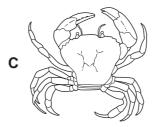


Fig. 5.1

(a) (i) The arthropod A is a locust, which belongs to the insect class.

State **two** features, visible on the locust in Fig. 5.1, which are characteristic of insects.

1	
2	[2

(ii) Name the classes to which arthropods **B** and **C** belong.

В	

C [2]

		44	
		15 A. P. P.	
(b)	gen offs	ne species of locust, the body colour may be brown or green. This is controlled with two alleles, G and g . If two locusts with brown bodies are mated, pring are always brown. If two locusts with green bodies are mated, some of pring may be brown. Write the possible genotype or genotypes for each of the following phenotypes.	aCan,
	(i)	Write the possible genotype or genotypes for each of the following phenotypes.	
		brown body	
		green body	[2]
	(ii)	Use a genetic diagram to explain why some of the offspring of two locusts green bodies may have brown bodies.	with
			[4]
c)		te whether the variation in body colour in these locusts is an example of <i>continu</i> ation or <i>discontinuous</i> variation. Explain your answer.	ious
			[1]
(d)	con	usts sometimes form huge swarms, which can fly long distances, and can eat appletely destroy whole fields of crops. These swarms are sometimes sprayed ticides from aeroplanes.	
	Sug	gest two possible disadvantages of using pesticides in this way.	
	1		
	2		
			[2]

www.PapaCambridge.com Fig. 6.1 shows apparatus a student used to investigate electrolysis using concentration 6 sodium chloride solution as the electrolyte.

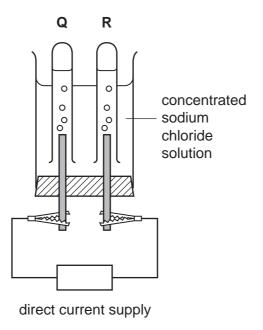


Fig. 6.1

When an electric current flowed through the circuit, chlorine gas collected in tube Q and hydrogen gas collected in tube R.

The balanced equation below describes the overall chemical change which takes place.

$$2NaCl + 2H_2O \rightarrow 2NaOH + Cl_2 + H_2$$

(a)	On Fig. 6.1 label the anode.

Give a reason for your choice.

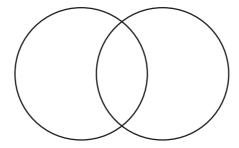
- (b) The student allowed the current to flow through the apparatus until 0.01 moles of hydrogen gas had been produced.
 - (i) State the number of moles of chlorine which were produced during the experiment.

[1]	

ad during Report For iner's

(ii) Calculate the mass of sodium hydroxide which was produced during experiment. (Relative atomic masses Na = 23, O = 16, H = 1)

Show your working.


[3]

(c) When chlorine gas is bubbled through a colourless solution of potassium bromide, KBr, the solution turns orange because the element bromine is produced.

(i)	Write	а	balanced	equation	for	the	reaction	between	chlorine	and	potassium
	bromio	de.									

TO1	1
121	ı

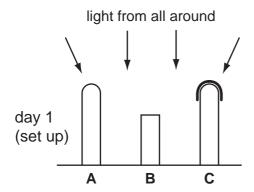
(ii) Complete the bonding diagram of a bromine molecule to show the arrangement of the outer electrons of each atom.

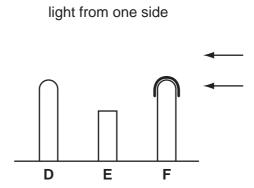
[2]

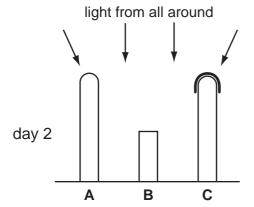
(iii) Describe how bromine is used to test hydrocarbons to find out whether or not they are unsaturated.

ro.

(iv) Complete the displayed formula to show the **alkene** which contains four carbon atoms in each of its molecules.


www.PapaCambridge.com 7 A student carried out an investigation into the response of plant shoots to light.


He grew six maize seedlings and treated them as follows.


- He did nothing to seedlings A and D.
- He cut the tips off seedlings B and E.
- He covered the tips of seedlings **C** and **F** with black paper.

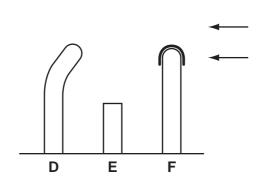

He placed one group of seedlings where they received light from all directions. He placed the second group of seedlings in a container where they received light from one side only.

Fig. 7.1 shows the appearance of the six seedlings when the experiment was first set up, and after one day.

light from one side

Fig. 7.1

(a)	The student concluded that the tip of a shoot is needed for growth. Description evidence in Fig. 7.1 that supports this conclusion.
	[0]
	[2]
(b)	Using the information in Fig. 7.1, deduce the positions of the receptor and the effector that are responsible for the growth response of a seedling towards light.
	Explain the evidence for your deductions.
	position of receptor
	evidence
	position of effector
	evidence
	[4]
(c)	Describe how auxin may be involved in the growth of shoots towards the light. You can use a diagram if it helps your answer.
	[3]

(ii) At the surface of the sea, the pressure of the atmosphere is 10 N/cm².

Estimate a value for the pressure at a depth of 10 m. Explain your answer.

[2]

8

		120				
A d	iver	is working under water, wearing a diving suit and helmet.	For			
(a)	The diving helmet has a plastic window of area 100 cm ² . The air pressure inside the helmet is the same as the water pressure outside.					
	(i)	At a depth of 40 m, the diver breathes air at a pressure of 50 N/cm ² .	1.			
		Calculate the force exerted by the air on the helmet window at this depth.				
	Use the formula					
		pressure = force/area				
		Show your working.				

[1]

its body. For iner's

(b) The diver sees a squid. A squid moves by forcing out a jet of water from its body.

This moving water has momentum.

(i)	The mass of water forced out is 1.2 kg and has a velocity of 10 m/s.			
	Show that the momentum of the moving water is 12 kg m/s.			
	State the formula that you use and show your working.			
	formula			
	working			
	Working			

[1]]	

(ii) To conserve momentum, the squid's momentum must equal the momentum of the water jet in the opposite direction.

The mass of the squid is 4 kg.

Calculate the velocity of the squid.

State the formula that you use and show your working.

formula

working

LJ.
ıυ

(c) (i) A dolphin near the surface is able to communicate underwater by ultrasonic waves with a frequency of 39 000 Hz.

The speed of these waves in water is 1500 m/s.

Calculate the wavelength of the waves.

State the formula that you use and show your working.

formula

working

[2]

(ii) The hearing range for a dolphin is from 1 kHz to 100 kHz. State the hearing range of an average adult human.

[1]

(iii) Fig. 8.1 shows the speed of the dolphin travelling through water.

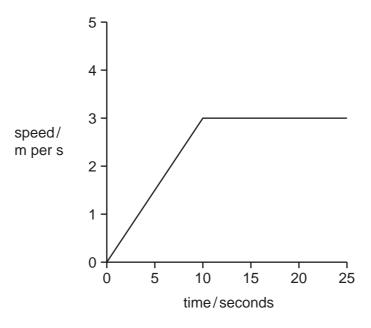
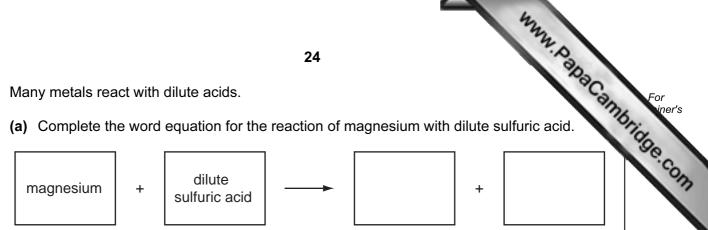


Fig. 8.1

Calculate the distance covered by the dolphin in the first 20 seconds.


Show your working.

[2]

mmm. PapaCambridge.com

Please turn over for Question 9.

- 9 Many metals react with dilute acids.
 - (a) Complete the word equation for the reaction of magnesium with dilute sulfuric acid.

[1]

(b) A student used the apparatus shown in Fig. 9.1 to investigate the rate of reaction between sulfuric acid and magnesium.

To start the reaction, she tilted the flask to mix the reactants.

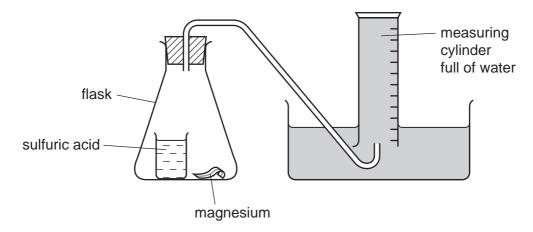


Fig. 9.1

She measured the volume of gas which had collected in the measuring cylinder every minute for several minutes.

Her results are shown in Fig. 9.2.

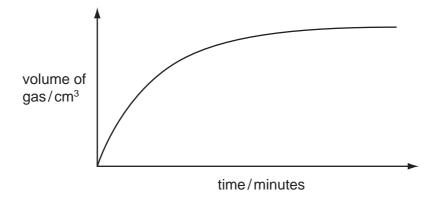


Fig. 9.2

	Explain these results in terms of the collisions between particles in the reacting in
	[3]
(c)	Fig. 9.3 shows a pencil sharpener. Both the case and the blades are made using alloys.
	blades made of steel case made of magnesium alloy
	Fig. 9.3
	Alloys rather than pure metals are used because they are stronger and less malleable.
	Draw diagrams to show part of the giant structures of a pure metal and an alloy. Use your diagrams to help you to explain why alloys are less malleable than the pure metals they contain.
	diagram of the structure of a pure metal diagram of the structure of an alloy
	[4]

(d) Table 9.1 shows information about the atomic structures of four particles W, X,

www.PapaCambridge.com

Table 9.1

	number of protons	number of neutrons	electrons in 1st shell	electrons in 2nd shell	electrons in 3rd shell
W	11	12	2	8	-
Х	9	10	2	8	-
Υ	12	12	2	8	2
Z	12	13	2	8	2

Explain which two particles very strongly.	from W, X, Y and Z in the table would attract one another
	[3]

BLANK PAGE

www.PapaCambridge.com

The Periodic Table of the Elements **DATA SHEET**

		- E	a. -		. c				
	0	He Helium	20 Ne 10	40 Ar Ar Argon	84 Kr Krypton 36	131 Xe Xenon	Radon 86		175
	=		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I Iodine 53	At Astatine 85		173 X
	5		16 Oxygen	32 S Sulfur	Selenium	128 Te Tellurium	Po Polonium 84		169 Tm
	>		14 N itrogen 7	31 P Phosphorus 15	75 AS Arsenic 33	Sb Antimony 51	209 Bi Bismuth 83		167 Fr
	≥		12 Carbon 6	28 Si Silicon	73 Ge Germanium 32	Sn Tin 50	207 Pb Lead		165
	=		11 Boron 5	27 A1 Aluminium 13	70 Ga Gatifum 31	115 In Indium	204 T 1 Thallium		162
					65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 T
					64 Cu Copper	108 Ag Silver	197 Au Gold		157
Group					59 N ickel	106 Pd Palladium 46	195 Pt Platinum 78		152 F.1
Gro					59 Co Cobalt 27	103 Rh Rhodium	192 Ir Iridium		150 S
		T Hydrogen			56 Fe Iron	Ruthenium	190 OS Osmium 76		D
					Manganese	Tc Technetium 43	186 Re Rhenium 75		44 Z
					Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 D
					51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73		140
					48 Ti Titanium 22	91 Zronium 40	178 Hf Hafnium * 72		
					Scandium 21	89 Y	139 La Lanthanum *	227 AC Actinium 1	series
	=		9 Be Beryllium	24 Mg Magnesium	40 Ca Calcium	St Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series
	_		7 Li Lithium	23 Na Sodium	39 K Potassium 19	85 Rb Rubidium	CS Caesium 55	Fr Francium 87	58-71 La

www.papaCambridge.com Ytterbium **H**mllum ğ Erbium Fm Es Californium 98 ۵ ర **B**erkelium **Terbium** gq Curium Am Еn Samarium Pu ž Ра ቯ Serium Cerium 232 **1** Thorium 90 b = proton (atomic) number a = relative atomic mass X = atomic symbol

Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.PapaCambridge.com

*	
*	
x	
x	
v	
v	
)	
У	
v	
0	
_	
*	

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CO-ORDINATED SCIENCES

0654/32

Paper 3 (Extended)

May/June 2009

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 28.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 23 printed pages and 5 blank pages.

BLANK PAGE

www.PapaCambridge.com

[2]

1 (a) A student investigated how a change in potential difference across a lamp affects current flowing through it.

She used wires to connect the components shown in Fig. 1.1 to make a circuit.

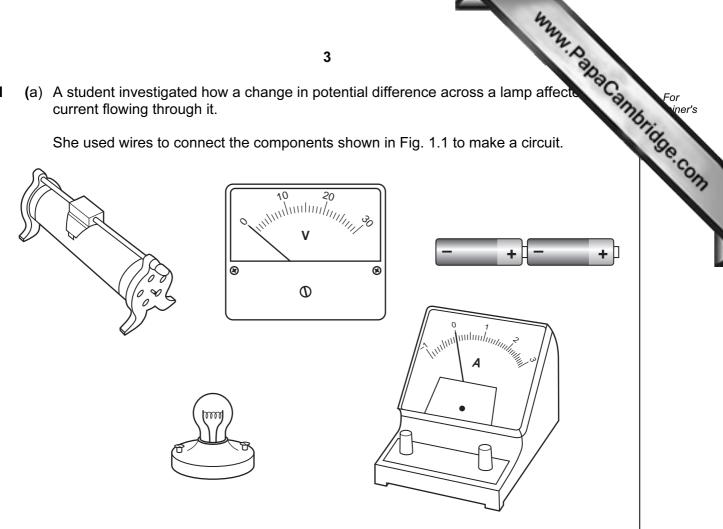


Fig. 1.1

(i) Using the correct symbols, draw a diagram to show the circuit she used.

(ii)	Explain why the variable resistor is included in the circuit.	
		 [1]
		- 1

working

er results are shown in T	4 able 1.1.	W	AM. A BABB C BANDA For iner's
	Table 1.1		Manual iner's
potential difference across lamp/V	current through lamp/A	resistance of lamp filament/ Ω	Secon
4	1.2	3.3	
8	1.5		
12	1.7	7.1	

Complete the table by calculating the missing resistance and writing your answer in the empty box.

State the formula that you use and show your working.
formula

(iv) The student concluded that the relationship between potential difference and current did not correspond to Ohm's law.

did not correspond to Ohm's law.	

Explain why the relationship between potential difference and current for the lamp

[2]

www.papaCambridge.com (b) Fig. 1.2 shows a wire moving upwards between the poles of two magnets. The the wire are connected to a sensitive ammeter. The ammeter shows the indu current.

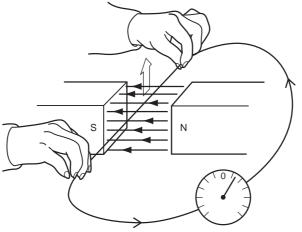


Fig. 1.2

(i) Draw on the ammeter in Fig. 1.3 the reading obtained if the wire was moved twice as quickly in the same direction.

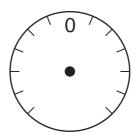


Fig. 1.3

[1]

(ii) Draw on the ammeter in Fig. 1.4 the reading obtained if the wire was moved in the opposite direction.

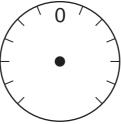


Fig. 1.4

[1]

(iii) Suggest why the ammeter must be a sensitive ammeter.

(iv) Name a device which uses this principle of inducing an electric current when a wire moves in a magnetic field.

[1	
 •	-

2 (a) Fig. 2.1 shows a transverse section of an artery.

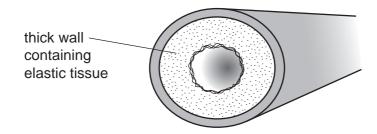


Fig 2.1

(i)	Explain why arteries have elastic tissue in their walls.	
		[2]
(ii)	Veins contain valves. Explain why arteries do not contain valves.	
		•••••
		[2]

(b) A man ran steadily on a running track for 10 minutes. Fig. 2.2 shows the rate of oxygen consumption by the muscles of his heart before, during and after the run.

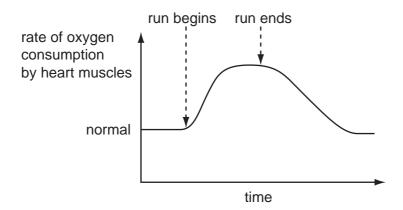


Fig. 2.2

3	Foc	od colourings are natural or synthetic dyes added to make food look more attractiv
	(a)	Describe the difference between natural and synthetic dyes.
		[1]
	(b)	Fig. 3.1 shows a piece of cloth which is stained with food colouring.
		Fig. 3.1
		The cloth is washed in water containing soap solution.
		Describe how soap molecules help to remove stains from the cloth. You may wish to draw some simple diagrams to help you answer this question.

[3]

	For	
•	Į OI	
	ine	~
	WIE	ıs

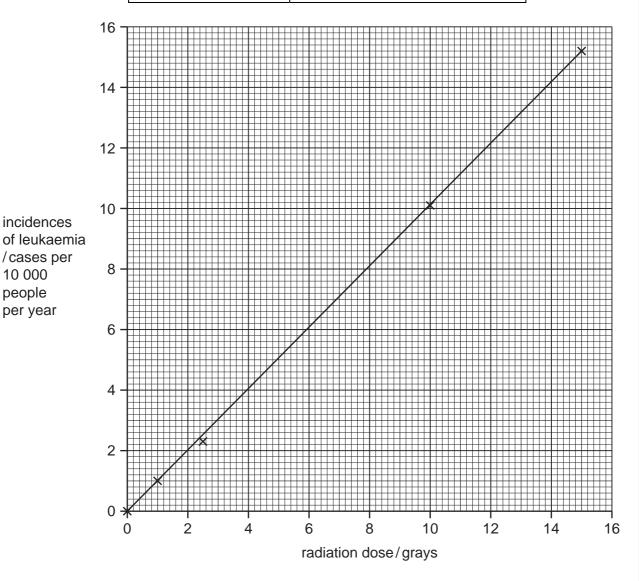
- (c) Some water supplied to houses contains calcium hydrogencarbonate, Ca(When heated, calcium hydrogencarbonate undergoes thermal decomposition.
- www.PapaCambridge.com (i) Complete the symbolic equation below which describes the thermal decomposition of calcium hydrogencarbonate.

$$Ca(HCO_3)_2 \rightarrow$$

[2]

(ii) The ionic charge of a calcium ion is 2+. Deduce the ionic charge of a hydrogencarbonate ion.

Show how you obtained your answer.


	[2]

(a) Many people have survived accidents where they have been exposed to radiation from radioactive materials. Such exposure can have serious effects on health.

www.PapaCambridge.com The table and graph show how the dose (amount) of radiation received is linked to a type of cancer called leukaemia. The radiation dose is measured in units called grays.

Table 4.1

radiation dose/grays	incidences of leukaemia/cases per 10 000 people per year
1.0	1.0
2.5	2.3
5.0	
10.0	10.1
15.0	15.2

10 000 people per year

Fig. 4.1

	Why.	
	11	
(i)	The result for 5.0 grays has been missed out of the table.	For iner's
	Use the graph to help you fill in the missing value in the table.	TONIGE TO
(ii)	What is the relationship between the ionising radiation and the incidence of leukaemia?	of Se.Com
		1] •

(b) Two types of nuclear radiation from naturally occurring sources are alpha and beta. They can be identified by their different penetrating powers.

Describe how you could distinguish between alpha and beta radiation by their penetrating powers. [1]

(c) Radon-222 (222Rn) is a radioactive element. The chart in Fig. 4.2 shows the number of protons and neutrons in the nuclei of the elements formed when radon decays.

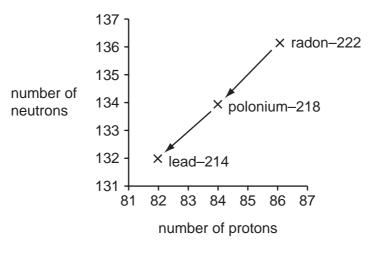



Fig. 4.2

(i)	Describe how the graph shows that radon-222 (²²² Rn) and polonium-218 (²¹⁸ Pc emit alpha particles.))
		••
		 21

	the state of the s
	State why radon and polonium are different elements. Radioactive decay can also produce gamma radiation.
(ii)	State why radon and polonium are different elements.
:::\	Dedicactive desay can also produce commo rediction
iii)	Radioactive decay can also produce gamma radiation.
	Explain why gamma emission does not result in the formation of a new element.
	[1]
iv)	Radon-222 has a half-life of 4 days.
	Explain what is meant by the term half-life.
	[1]
(v)	1 mg of radon-222 is allowed to decay.
	Calculate after how many days there would be 0.125 mg of radon-222 remaining.
	Show your working.
	[2]

Please turn over for Question 5.

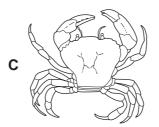


Fig. 5.1

(a) (i) The arthropod A is a locust, which belongs to the insect class.

State **two** features, visible on the locust in Fig. 5.1, which are characteristic of insects.

1	
2	[2

(ii) Name the classes to which arthropods **B** and **C** belong.

В	

C [2]

		The state of the s	
		15	Pap
(b)	gen offs	one species of locust, the body colour may be brown or green. This is controlne with two alleles, ${\bf G}$ and ${\bf g}$. If two locusts with brown bodies are maspring are always brown. If two locusts with green bodies are mated, som spring may be brown.	ited,
	(i)	Write the possible genotype or genotypes for each of the following phenoty	pes.
		brown body	
		green body	[2]
	(ii)	Use a genetic diagram to explain why some of the offspring of two locu green bodies may have brown bodies.	ısts with
			[4]
(c)		ate whether the variation in body colour in these locusts is an example of <i>col</i> riation or <i>discontinuous</i> variation. Explain your answer.	ntinuous
	•••••		[1]
(d)	con	custs sometimes form huge swarms, which can fly long distances, and can mpletely destroy whole fields of crops. These swarms are sometimes spraysticides from aeroplanes.	
	Sug	ggest two possible disadvantages of using pesticides in this way.	
	1		
	2		
			[2]

www.PapaCambridge.com Fig. 6.1 shows apparatus a student used to investigate electrolysis using concentration 6 sodium chloride solution as the electrolyte.

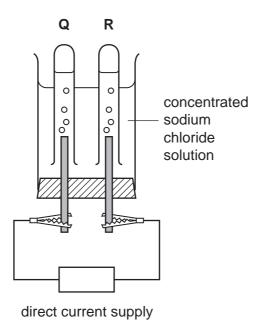


Fig. 6.1

When an electric current flowed through the circuit, chlorine gas collected in tube Q and hydrogen gas collected in tube R.

The balanced equation below describes the overall chemical change which takes place.

$$2NaCl + 2H_2O \rightarrow 2NaOH + Cl_2 + H_2$$

(a)	On Fig. 6.1 label the anode.

Give a reason for your choice.

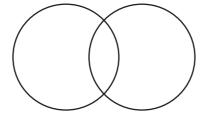
- (b) The student allowed the current to flow through the apparatus until 0.01 moles of hydrogen gas had been produced.
 - (i) State the number of moles of chlorine which were produced during the experiment.

[1]	

ed during and for iner's

(ii) Calculate the mass of sodium hydroxide which was produced during experiment. (Relative atomic masses Na = 23, O = 16, H = 1)

Show your working.


[2]
 [၁]

(c) When chlorine gas is bubbled through a colourless solution of potassium bromide, KBr, the solution turns orange because the element bromine is produced.

(i)	Write	а	balanced	equation	for	the	reaction	between	chlorine	and	potassium
	bromio	de.									

r	$\Gamma \cap$	٠
	17	
	1-	

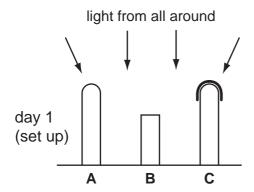
(ii) Complete the bonding diagram of a bromine molecule to show the arrangement of the outer electrons of each atom.

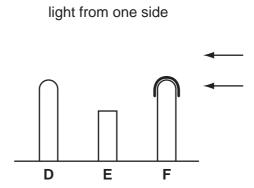
[2]

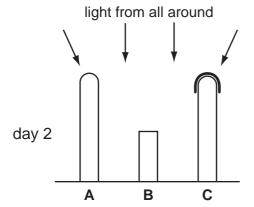
(iii) Describe how bromine is used to test hydrocarbons to find out whether or not they are unsaturated.

[2]

(iv) Complete the displayed formula to show the **alkene** which contains four carbon atoms in each of its molecules.


www.PapaCambridge.com 7 A student carried out an investigation into the response of plant shoots to light.


He grew six maize seedlings and treated them as follows.


- He did nothing to seedlings A and D.
- He cut the tips off seedlings B and E.
- He covered the tips of seedlings **C** and **F** with black paper.

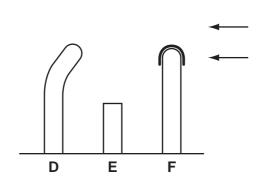

He placed one group of seedlings where they received light from all directions. He placed the second group of seedlings in a container where they received light from one side only.

Fig. 7.1 shows the appearance of the six seedlings when the experiment was first set up, and after one day.

light from one side

Fig. 7.1

(a)	The student concluded that the tip of a shoot is needed for growth. Description evidence in Fig. 7.1 that supports this conclusion.
	[0]
	[2]
(b)	Using the information in Fig. 7.1, deduce the positions of the receptor and the effector that are responsible for the growth response of a seedling towards light.
	Explain the evidence for your deductions.
	position of receptor
	evidence
	position of effector
	evidence
	[4]
(c)	Describe how auxin may be involved in the growth of shoots towards the light. You can use a diagram if it helps your answer.
	[3]

8 Two skiers ${\bf A}$ and ${\bf B}$ start a straight downhill race.

Fig 8.1 shows how the motion of skier **A** changes during the race. Skier **A** finishes the rate after 40 seconds and then slows down and stops after 50 seconds.

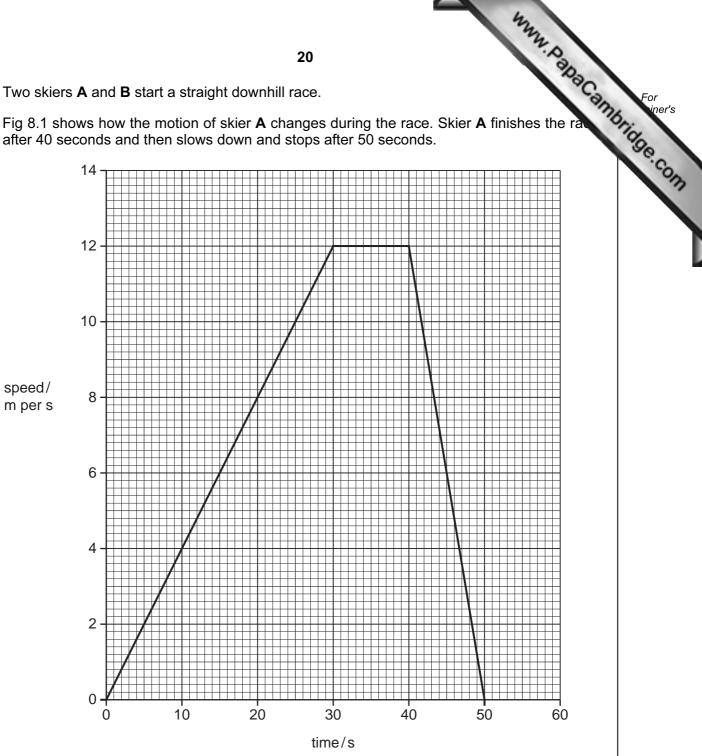


Fig. 8.1

(a)	(i)	Describe the motion of skier A between 0 and 30 seconds.				
			[2]			
	(ii)	Calculate the distance skier A travels between 0 and 30 seconds.				
		Show your working.				

[2]

For iner's

(b)	The	e mass of skier A is 60 kg. Calculate the kinetic energy of the skier when her 10 m/s.	ant
		State the formula that you use and show your working.	1
		formula	
		working	
		[2	<u>']</u>
(c)	(i)	Calculate the deceleration of skier A between 40 and 50 seconds.	
		State the formula that you use and show your working.	
		formula	
		working	
		[2	<u>2]</u>
	(ii)	Calculate the force on skier A which causes this deceleration.	
		State the formula that you use and show your working.	
		formula	
		working	
		[2	<u>2]</u>
(d)		er B wins the race. On Fig. 8.1 show how the motion of skier B might change during race.	3
	Exp	olain your answer.	
		[2	<u>.</u>]

9 Hydrogen peroxide, H₂O₂, is a colourless liquid which slowly decomposes according equation below.

hydrogen peroxide → water + oxygen.

www.PapaCambridge.com If the black solid compound manganese dioxide, MnO2, is added to a solution of hydrogen peroxide, it acts as a catalyst and the rate of reaction is greatly increased.

(a)	Describe the test for oxygen gas.
	F4*

(b) A student uses the apparatus shown in Fig. 9.1 to study the rate of reaction when hydrogen peroxide solution decomposes.

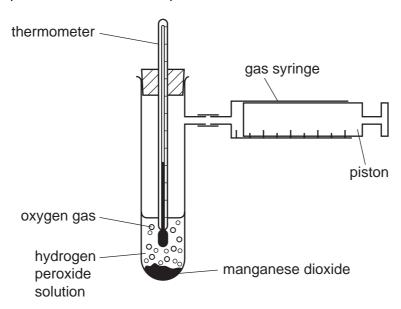


Fig. 9.1

The student carries out three trials to investigate the effect of changing the concentration of the hydrogen peroxide solution. She attempts to keep all other variables the same in each trial.

Her results are shown in Table 9.1.

[4]

hl hydrogen ber peroxide	volume of	4: 4-1 4-	
concentration in mol / dm ³	oxygen collected / cm ³	time taken to collect oxygen / s	rate of production o oxygen in cm ³ /s
0.4	50	10	5.0
0.2	50	20	
0.1	50	40	1.25
Calculate the rate of particle 1. Table 9.1. Using the data in Table between the rate of particle peroxide solution in this	9.1, explain in terms roduction of oxygen	of collisions of mole	[ecules, the relation

(iii)	Describe how the student could show that manganese dioxide is behaving as a catalyst and is therefore not used up or chemically changed.
	[2

Table 9.2

(c) Tal	ole 9.2 shows info		24 e atomic structure ble 9.2	e of four particles	P, Q, R and electrons in	For iner's
	number of protons	number of neutrons	electrons in 1 st shell	electrons in 2 nd shell	electrons in 3 rd shell	On
Р	17	20	2	8	8	
Q	10	10	2	8	-	'
R	9	10	2	8	-	
S	17	18	2	8	7	

(i)	Explain which two particles from P, Q, R and S are isotopes of the same element.
	[2
(ii)	State which particle from P , Q , R and S is an atom of a very unreactive element.
	[1

The Periodic Table of the Elements DATA SHEET

	0	4 He Helium	20 Ne Neon 10	40 Ar Argon	36	X Xenon 54	Radon 86		175 Lu Lutetium
	II/		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85		173 Yb Ytterbium
	IN		16 Oxygen 8	32 S Sulfur 16	79 Selenium	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium
	>		14 X Nitrogen 7	31 Phosphorus	75 AS Arsenic	Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium
	<u>></u>		12 C Carbon 6	28 Si licon	73 Ge Germanium	Sn Tin 50	207 Pb Lead		165 Holmium
	III		11 B Boron 5	27 A1 Auminium 13	70 Ga Gallium 31	115 In Indium 49	204 T 1 Thallium		162 Dy Dysprosium
					65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury		159 Tb Terbium
					64 Copper	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium
Group						106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium
Gre					59 Co Cobalt	Rhodium 45	192 Ir Iridium		Samarium
		1 T Hydrogen			56 Fe Iron 26	Ruthenium	190 Os Osmium 76		Pm Promethium
					Mnnganese	Tc Technetium 43	186 Re Rhenium 75		144 Neodymium
					Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium
					51 V Vanadium 23	93 Niobium 41	181 Ta Tantalum 73		140 Ce Cerium
					48 Ti Titanium 22	91 Zr Zirconium 40	178 Hf Hafnium * 72		
					Scandium 21	89 ≺ Yttrium 39	139 La Lanthanum *	227 Ac Actinium 89	series eries
	=		9 Be Beryllium 4	24 Mg Magnesium	40 Ca Calcium	Sr Strontium	137 Ba Barium 56	226 Ra Radium	*58-71 Lanthanoid series 190-103 Actinoid series
	_		7 L.i Lithium 3	23 Na Sodium	39 K Potassium	Rb Rubidium	133 Cs Caesium 55	Francium 87	*58-71 Le

Pa U Np Pu Am Cm Bk Cf Es	Erbium Thulium				Dysprosium	Terbium	dolinium	ropium	DID narium	Pn omethium	Neodymium		Cerium
	9	<u> </u>	89	29	ວັ	65 B	Ę	m	n d	QN.	238 U		232 Th
Productinum Usanium Pulconum Americum Cannomium Enistenium 91 92 93 94 95 96 97 98 99	≥ 5	≥ 5			Californium 98	Berkelium 97	Curium	ericium	lutonium	aptrunium	Jranium	otactinium	- 06
		E min M	δ 7	mium w		Sprosium Cf lifornium	BK Californium	Cf Carfornium Dysprosium 65 66 Cf	Oplum Gadolinum Ferburm Dysprosium 64 65 66 66 Mm Cm Bk Cf ericlum Curfum Berkellum Californium	Pu Am Cm Bk Cf nonium Americium Curium Caffornium	Np Pu Americum Gadolinium 64 GA G5 G6 G6 G6 G6 G6 G6 G7 G7 <td>Odymun Promethrum Samarfum Europium Gadolinum Terbum Dysprosium 238 W Pu Am Cm BK Cf Informium Neptunium Putonium Americium Californium Californium</td> <td>Pa Uranium Neptunium Samarium Europium Gadolinium Terbium Dysprosium Cadolinium Ilerbium Dysprosium Dysprosium Cadolinium Curanium Neptunium Orbinoium Orbinium Orbin</td>	Odymun Promethrum Samarfum Europium Gadolinum Terbum Dysprosium 238 W Pu Am Cm BK Cf Informium Neptunium Putonium Americium Californium Californium	Pa Uranium Neptunium Samarium Europium Gadolinium Terbium Dysprosium Cadolinium Ilerbium Dysprosium Dysprosium Cadolinium Curanium Neptunium Orbinoium Orbinium Orbin

Key

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.