

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

dridge con

*	
4	
v	
6	
_	
4	
4	
N	
7	
4	
9	
J	

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CO-ORDINATED SCIENCES

0654/23

Paper 2 (Core)

May/June 2010

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 23 printed pages and 1 blank page.

www.PapaCambridge.com 2 1 (a) Complete the diagram in Fig. 1.1 to show the energy transfers in a power fuelled by a nuclear reactor. nuclear heat electrical [1] Fig. 1.1 (b) Name one nuclear fuel. [1] (c) (i) Coal is a non-renewable energy source. Explain what is meant by the term non-renewable. _____[1] (ii) State one example of a renewable energy source that can be used to generate electricity. [1] (iii) State **one** advantage of a nuclear power station over a coal-burning power station. _____[1] (d) Explain why electricity is transmitted at high voltage. Your answer should include ideas about current, voltage and energy loss.

[2]

		May	
		3	
(e)		e of the waste products formed in nuclear power stations is the ontium-90.	For iner's
		ontium-90, like other waste products from nuclear reactors, has been produced clear fission.	by Ortale Co.
	(i)	State what happens to the nuclei of atoms during nuclear fission.	177
			[1]
	(ii)	Strontium-90 decays by beta particle emission. What is a beta particle?	
			[1]

Oraw lines to link each protein to	its function.		
			`
protein		function	M. PapaCann
haemoglobin		breaks down starch to maltose	
	_		
insulin		transports oxygen	
			
amylase		reduces blood glucose level	
			[2]
	Fig. 2.1		
our elements found in a	_		[

(c) Two food samples were tested with iodine solution, Benedict's reagent and biuret reagent. The results are shown in Table 2.1.

Table 2.1

	food sample A	food sample B
colour after iodine test	brown	blue-black
colour after Benedict's test	orange-red	orange-red
colour after biuret test	purple	blue

State which food or foods contained protein.
Explain your answer.
[2]

(d)	When a person eats more protein than can be immediately used in the box excess protein is broken down to produce the waste product urea.
	Name the organ in which urea is produced. [1]
(e)	Suggest how a nitrogen atom in a molecule of nitrogen gas in the atmosphere could become part of a protein in a plant.

For iner's

www.PapaCambridge.com 3 (a) Electrolysis is used in industry to convert the raw material, salt (sodium chloride three valuable products.

Two of these products are chlorine and sodium hydroxide solution.

A simplified diagram of the apparatus is shown in Fig. 3.1.

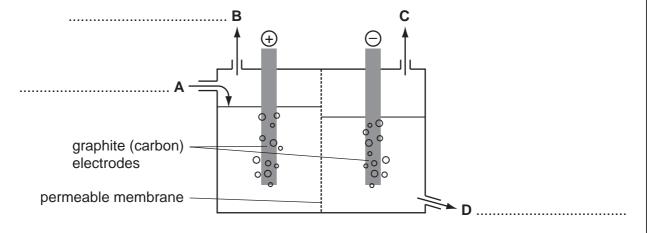


Fig. 3.1

(1)	The product which leaves th	e apparatus	at point C	is a	colourless	gas	which	burns
	with a squeaky pop.							

	State the name or chemical formula of this gas.
	[1]
(ii)	Suggest the names or formulae of the chemicals found at points ${\bf A},{\bf B}$ and ${\bf D}$ in Fig. 3.1.
	Write your answers on the diagram in Fig. 3.1. [2]
iii)	State two properties of graphite (carbon) which make it a suitable material from which to make the electrodes.
	[2]
iv)	Describe a safe chemical test for chlorine.

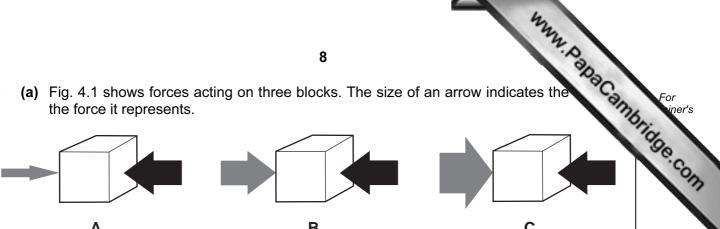

(b) Sucralose is a compound which is used instead of sucrose (sugar) to sweeten for drink. Table 3.1 contains information about sucrose and sucralose.

Table 3.1

ıcralose is a compound wh nk. Table 3.1 contains info		rose (sugar) to sweeten for d sucralose.	For miner's e
	chemical formula	kilojoules in 1 gram	OM
sucrose	C ₁₂ H ₂₂ O ₁₁	17	
sucralose	C ₁₂ H ₁₉ O ₈ C <i>l</i> ₃	0	

(i)	Explain which compound, sucrose or sucralose, is a carbohydrate.
	[1]
(ii)	State the total number of atoms which are combined in one molecule of sucralose.
	[1]
(iii)	Sweeteners containing sucralose are more expensive than sucrose, but one gram tastes much sweeter than one gram of sucrose.
	Suggest why people might prefer to use sweeteners containing sucralose rather than sucrose.
	[2]

(a) Fig. 4.1 shows forces acting on three blocks. The size of an arrow indicates the 4 the force it represents.

	Α	В	,	С	
		Fig. 4.1			
(i)	Which of the	blocks would start to mov	e?		
	Explain your	answer.			
	blocks				
	explanation				
					[2]
(ii)	On the block motion.	s in Fig. 4.1 that move, o	Iraw another arrow to show	v the directior	n of [1]
(iii)	Name one fo	rce which acts downward	s on all the blocks.		
					[1]
(iv)	State the sou	rce of this force.			
					[1]
(b) Or	ne of the blocks	has a mass of 720 g and	a volume of 80 cm ³ .		
Ca	alculate the der	sity of the block.			
St	ate the formula	that you use and show yo	ur working.		
	formula				
	working				
				g/cm ³	[2]

(c) A student tested a block to see if it conducted electricity.

www.PapaCambridge.com Draw a simple circuit which the student could build for this purpose. Use the corre circuit symbols.

(a) Fig. 5.1 shows how light intensity affects the rate of photosynthesis of a plant. 5

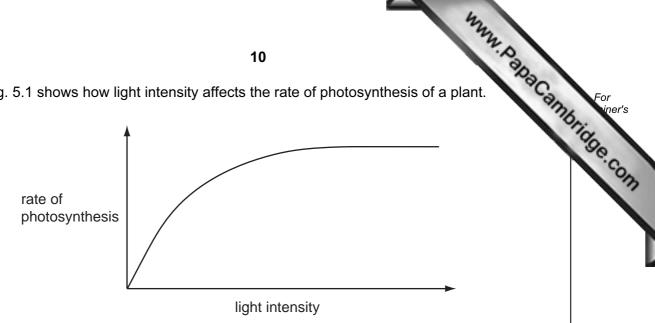


Fig. 5.1

(i)	Describe the relationship between light intensity and the rate of photosynthesis.	
		•••••
		[2]
(ii)	Explain why light is needed for photosynthesis.	
		•••••
		[2]

(b) The diagrams in Fig. 5.2 show sections through two leaves on the same tree. The two diagrams are drawn to the same scale.

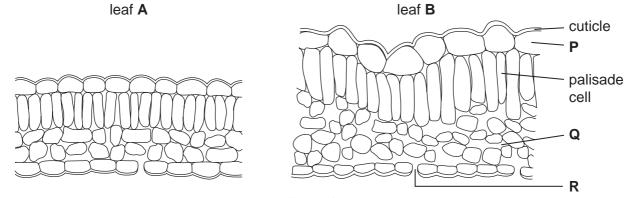


Fig. 5.2

(i) Name the parts labelled P, Q and R on Fig. 5.2.

Р	
Q	
_	

[3]

		The state of the s
		11 A. D.
	(ii)	Leaf A was taken from a part of the tree that was always in the shade. Leaf B was taken from a part of the tree that received plenty of sunlight. Both leaves are put into bright light. Using Fig. 5.2, suggest in which leaf photosynthesis will happen faster in these conditions. Explain your answer.
		Both leaves are put into bright light.
		Using Fig. 5.2, suggest in which leaf photosynthesis will happen faster in these conditions. Explain your answer.
		leaf
		explanation
		[1]
	(iii)	Suggest why leaf B has a thicker cuticle than leaf A .
		[2]
	(iv)	Describe how carbon dioxide travels to a palisade cell in a leaf.
		[3]
(c)	The	differences between leaf A and leaf B are an example of variation.
	Sta	te whether this variation is caused by
	•	genes,
	•	the environment,
	•	both genes and environment together.
	Exp	lain your answer.
	cau	se of variation
	ехр	lanation
		[2]

6 (a) Solutions of substances in water are acidic, neutral or alkaline.

Table 6.1

		12	:					MAN, POR	
Solutions of substances in wate	r are a	cidic,	neu	utral o	r alka	line.			OC ON
Choose pH values from the list	oelow t	to cor	mple	ete Ta	ble 6	.1.			
list of pH values	2 5	5	7	9	13				`
	Tab	le 6.′	1						
liquid		desc	ript	tion			рН		
sodium chloride solution		ne	eutra	al					
lemonade (a fizzy drink)	١	weak	ly a	cidic					

[2]

(b) A student used the apparatus shown in Fig. 6.1 to investigate the reaction between dilute hydrochloric acid and magnesium.

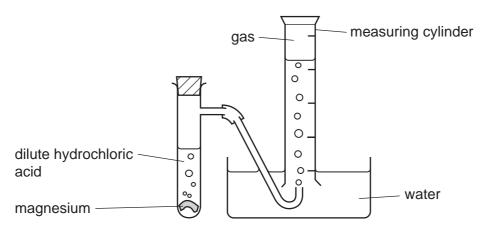


Fig. 6.1

(i) The student made several observations and measurements during her investigation.

Suggest and explain an observation which would show that the reaction between magnesium and dilute hydrochloric acid is exothermic.

[2	2]

(ii)	State two changes which the student could make to the reaction conditions the gas collected more slowly in the measuring cylinder.
	1
	2
	[2]
(iii)	Complete the word equation for the reaction between dilute hydrochloric acid and magnesium.
	ochloric acid + magnesium +
	[2]
(c) Ma	gnesium, Mg, is a metallic element.
(i)	Explain the meaning of both words in the term metallic element.
	metallic
	element
	[2]
(ii)	Name one other element which is in the same group of the Periodic Table as magnesium.
	[1]
(iii)	An atom of magnesium has a nucleon (mass) number of 26.
	Calculate the number of neutrons in this magnesium atom.
	Use the Periodic Table on page 24.
	Show your working.
	[1]

For miner's 7 (a) A racing car is being driven in a race.

The graph in Fig. 7.1 shows the speed of the car over a 26 second period.

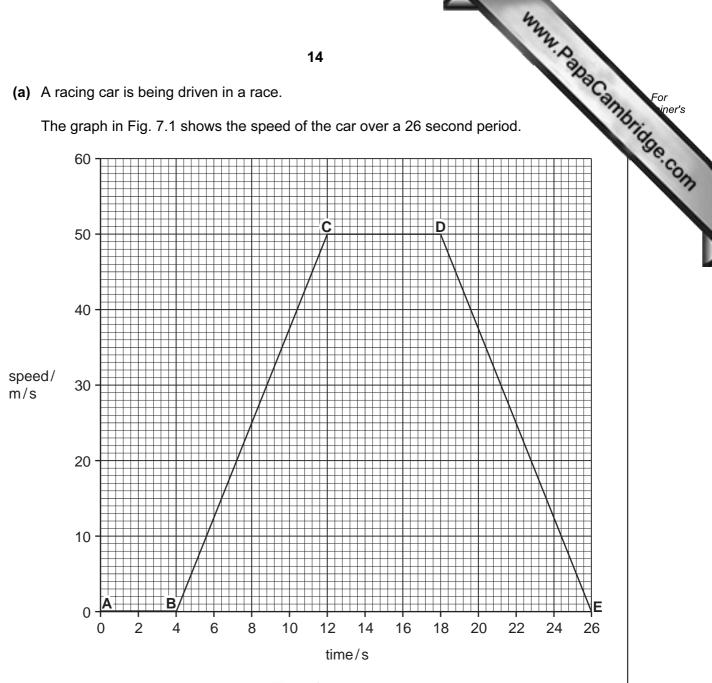


Fig. 7.1

(1)	Between which points on the graph is the car not moving?	
		[1]
(ii)	State the speed of the car between C and D .	
	m/s	[1]

		WWW. Pak	
	15	2.0	1
(iii)	The mass of the car and driver is 600 kg.		S.C.
	Calculate the momentum of the car between C and D .	·	
	State the formula that you use and show your working.		
	formula		
	working		
		kgm/s	[2]
(iv)	Calculate the acceleration of the car between B and C .		
	Show your working.		
		m/s²	[2]

www.PapaCambridge.com (b) A wheel on a car needs changing. Fig. 7.2 shows a spanner of length 0.3 m being to turn a wheel nut.

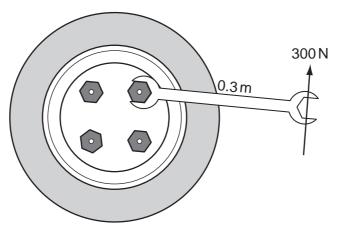


Fig. 7.2

(i)	Calculate the turning effect (moment) of the spanner.
-----	--------------------------------------	-------------------

State the formula that you use and show your working.

formula

working

			Nm	[2]
	(ii)	Give two ways in which you can increase the spanner's turning effe	ct.	
		1		
		2		[2]
(c)	A ca	ar has been painted blue. Blue is a primary colour of light.		
	Nar	me the two other primary colours of light.		
		and		[1]


17

BLANK PAGE

Please turn over for Question 8.

www.PapaCambridge.com

8 Sprinters need fast reflexes to make a good start in a 100 m race. They respond sound of the starting gun by pushing off from their starting blocks as fast as they can.

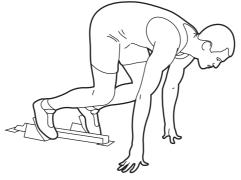


Fig. 8.1

(a) Choose the correct word from the list to identify the stimulus, receptor and effector in this response.

ear	eye	muscle	sprinter	sound	
stimulus					
receptor					
effector					[3]

(b) The time between the starting gun being fired and the runner pushing off from the starting blocks is known as the reaction time.

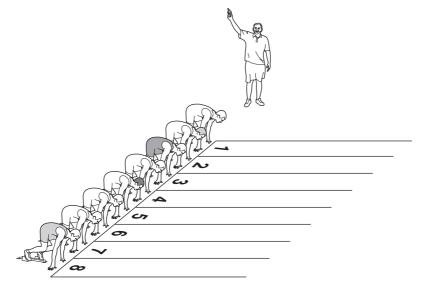


Fig. 8.2

The reaction time is made up of:

- the time taken for the sound from the starting gun to reach the runner's ear,
- plus the time taken for a nerve impulse to pass from the ear to the brain,
- plus the time taken for a nerve impulse to pass from the brain to the leg muscles.

www.PatraCambridge.com (i) A runner in lane 1 is 2 m from the starting gun. Sound travels at 330 m/s. Calculate the time taken for the sound to reach the runner's ear. Show your working.

 s	[2]

[1]

Table 8.1 shows the reaction times of the runners in lane 1 and lane 8 in the heats (qualifying races) for a 100 m race.

Table 8.1

				reaction	time/s			
	heat 1	heat 2	heat 3	heat 4	heat 5	heat 6	heat 7	heat 8
lane 1	0.133	0.146	0.170	0.160	0.186	0.176	0.149	0.147
lane 8	0.228	0.223	0.188	0.195	0.178	0.199	0.163	0.167

(ii) Draw a ring around the heat that shows anomalous results.

this.

(iii) In which lane did the runners have the longer reaction times? Suggest a reason for

lane	
reason	
	[1]

(c)	Dur	ring a sprint race, a runner's muscle cells use anaerobic respiration.
	(i)	Explain what is meant by anaerobic respiration.
		[2]
	(ii)	Name the waste substance that is made when anaerobic respiration takes place in human cells.
		[1]
	(iii)	Describe how the body gets rid of this waste substance after the race is over.
		[2]

For iner's 9 Fig. 9.1 shows part of the water cycle.

www.PapaCambridge.com P shows where liquid water is evaporating into water vapour which rises and the condenses back into drops of liquid water in clouds.

Q shows where rain is falling. The rainwater collects in streams and rivers which flow over rocks in the Earth's crust.

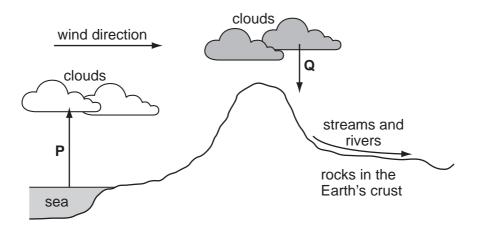


Fig. 9.1

(a)	State briefly what happens to the rising water vapour, ${\bf P}$, in Fig. 9.1 which causes it to condense.
	[1]
(b)	Water molecules contain the elements hydrogen and oxygen.
	A student thinks that the oxygen in water should relight a glowing wooden splint.
	Explain why a glowing wooden splint does not relight when placed into a test-tube full of water vapour.
	701

		the the same of th	
		22	
(c)		e rocks in the Earth's crust undergo weathering and erosion which are improved the cesses in the formation of clay.	r's
	(i)	State what must be done to objects made of clay to change them into rigid ceramic objects such as dinner plates.	
		[1]	77
	(ii)	Carbon is a non-metallic element.	7
		Explain why rainwater which contains dissolved carbon dioxide causes chemical weathering of limestone rocks.	L
		[3]	

(d) Fig. 9.2 shows a simplified diagram of a machine used to wash dishes.

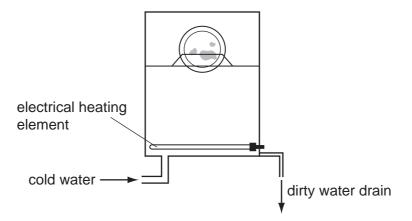


Fig. 9.2

In this machine the water, which is to be used to clean the dishes is first heated to a high temperature and then a detergent is added.

(1)	machine.	เกเร
		[1]
(ii)	Name a metallic element whose compounds cause hardness in water.	
		[1]
(iii)	Explain briefly the advantage of adding a detergent to the water in the machine.	
		[1]

For miner's e

	Elements
DATA SHEET	The Periodic Table of the

								Ş	Group									
_	=											≡	2	>		II/	0	
							1 Hydrogen										He Helium	
7 Li Lithium	Beryllium							1				11 Boron	12 C Carbon 6	14 X Nitrogen 7	16 Oxygen	19 Fluorine	20 Ne on 10	
23 Na Sodium	Mg Magnesium											27 A 1 Aluminium 13	28 Si Silicon 14	31 Phosphorus	32 S Suffur	35.5 C1 Chlorine	40 Ar Argon	
39 K Potassium	40 Ca Calcium	Scandium 21	48 Ti Titanium	51 V Vanadium 23	52 Cr Chromium 24	55 Mn Manganese 25	56 Fe Iron 26	59 Co Cobalt	59 Ni Nickel 28	64 Cu Copper 29	65 Zn Zinc 30	70 Ga Gallium 31	73 Ge Germanium	75 AS Arsenic 33	Se Selenium 34	80 Br Bromine 35	84 Kr Krypton 36	
Rb Rubidium	Strontium 38	89 Yttrium	2r Zrconium 40	Niobium	96 Mo Molybdenum 42	Tc Technetium 43	Ruthenium 44	Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	Cadmium 48	115 In Indium	119 Sn Tin	Sb Antimony 51	128 Te Tellurium 52	127 I lodine 53	131 Xenon Xenon	24
Caesium 55	137 Ba Barium 56	139 La Lanthanum 57 *		181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 Ir	195 Pt Platinum 78	197 Au Gold	201 Hg Mercury 80	204 T 1 Thallium	207 Pb Lead	209 Bi Bismuth	Po Polonium 84	At Astatine 85	Radon 86	
Fr Francium 87	226 Ra Radium 88	227 AC Actinium †																
8-71 L 0-103	*58-71 Lanthanoid series 190-103 Actinoid series	id series series		140 Ce Cerium	141 Pr Praseodymium 59	144 Nd Neodymium 60	Pm Promethium 61	Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium	173 Yb Ytterbium 70	Lutetium 7.1	
Key	т ×	 a = relative atomic mass X = atomic symbol b = proton (atomic) number 	iic mass ool ic) number	232 Th Thorium	Pa Protactinium 91	238 U Uranium 92	Neptunium		Am Ameridum 95	Carrium 96	Bk Berkelium	Californium 98	ES Einsteinium 99	Fm Fermium 100	Md Mendelevium 101	Nobelium	Lr Lawrencium 103	Why.
				The v	olume of	one mole	of any ge	as is 24 dl	m³ at roor	The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).	ature and	pressure	(r.t.p.).			A.	Canada	v. PapaCambridge
															1	CON		

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.