

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

ONS OTHORING CO.

*	
∞	
_	
9	
6	
0	
6	_
∞	
Ν	
6	
_	

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CO-ORDINATED SCIENCES

0654/51

Paper 5 Practical Test

May/June 2010

2 hours

Candidates answer on the Question Paper.

Additional Materials:

As listed in Instructions to Supervisors

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

Chemistry practical notes for this paper are printed on page 12.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use			
1			
2			
3			
Total			

This document consists of 11 printed pages and 1 blank page.

BLANK PAGE

www.PapaCambridge.com

				3	1
1			lants show differences between a lea in a shaded area (shade leaf) of the	f growing in a sunny area (sun leaf), and plant.	Can
	(a)	(i)	You are supplied with two leaves shade leaf.	, labelled sun leaf and another leaf label	led
			Make drawings of the two leaves in size.	the spaces provided to show the difference	e in
			sun leaf	shade leaf	[2]
		lenç	gth of sun leaf = mm	length of shaded leaf = mm	[2]
		(ii)	Measure the maximum length of ea	ach leaf on your drawing, excluding the peti	ole

(stalk). Write your measurements below each diagram.

(b) One leaf has a larger surface area than the other.

Suggest an advantage to the leaf with the larger surface.

For iner's (c) Fig. 1.1 shows cross sections of a sun leaf and a shade leaf as viewed microscope.

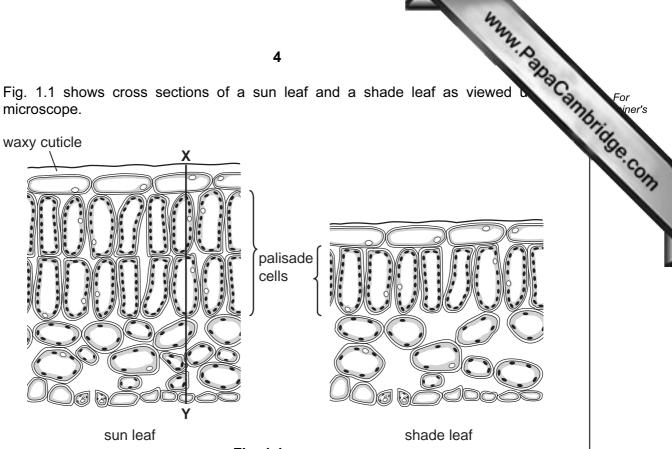


Fig. 1.1

(i) Construct a table to compare the two diagrams shown in Fig. 1.1. Include the following features; thickness of leaf, number of palisade cells, size of air spaces.

	my	
	5	
(ii)	Study the differences, shown in Fig.1.1 between the sun leaf and the shade	D.
	Study the differences, shown in Fig.1.1 between the sun leaf and the shade. Choose one difference and explain how this difference affects the rate photosynthesis, in the leaves. difference	13
	difference	•••
	explanation	
		2]
(iii)	The sun leaf usually has a thicker cuticle than the shade leaf. The cuticle is a wax layer covering the leaf.	У
	Suggest an advantage that this thicker cuticle gives to the sun leaf.	
	[1	1]
(d) (i)	You are going to calculate the magnification of the leaf section in Fig. 1.1.	
	Measure the length of the line in XY in Fig. 1.1.	
	length = mm [1	1]
(ii)	The real length of the line XY is 0.2 mm.	
	Use this fact and your answer to d(i) to calculate the magnification of the leaf in Fig. 1.1.	n
	magnification =[2	2]

- www.papaCambridge.com You are going to make some measurements on a test-tube before using it to determ 2 density of liquid P.
 - (a) Measure and record the length, *I*, and the internal diameter, **D**, of the test-tube.

D = _____ mm *l* = _____mmm

Using these measurements, calculate the volume of the tube using the formula

$$\pi \times \left(\frac{\mathbf{D}}{2}\right)^2 \times l$$

volume of test-tube = ____mm³ [3]

(b) (i) Hold the test-tube in the glass beaker labelled water and add dry sand to the tube until it floats with its open end about 10 mm above the surface. Place a rule in the water beside the tube and measure the depth, d₁ from the water surface to the bottom of the test-tube. See Fig. 2.1. You may need to hold the tube upright to do this.

Record this value, \mathbf{d}_1 in Table 2.2 on page 7.

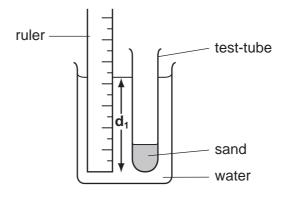


Fig. 2.1

(ii) Remove the test-tube from the water and wipe the outside, taking care not to lose any sand. Do not let water splash into the test-tube. Place the test-tube in the beaker labelled liquid P and as before, measure the depth, d₂.

Record this value, d_2 in the first line of Table 2.2.

(iii) Remove the test-tube and wipe the outside. Empty out a small amount of sand so that it floats in the water with the open end about 12 or 13 mm above the surface.

Measure and record d_1 , the new depth in Table 2.2.

As before, wipe the outside of the test-tube and transfer it to the liquid P.

Measure and record the new depth d_2 in Table 2.2.

www.PapaCambridge.com (iv) Repeat the process with the tube floating about 2 or 3 mm higher in water each time, until you have five sets of readings of d_1 and d_2 .

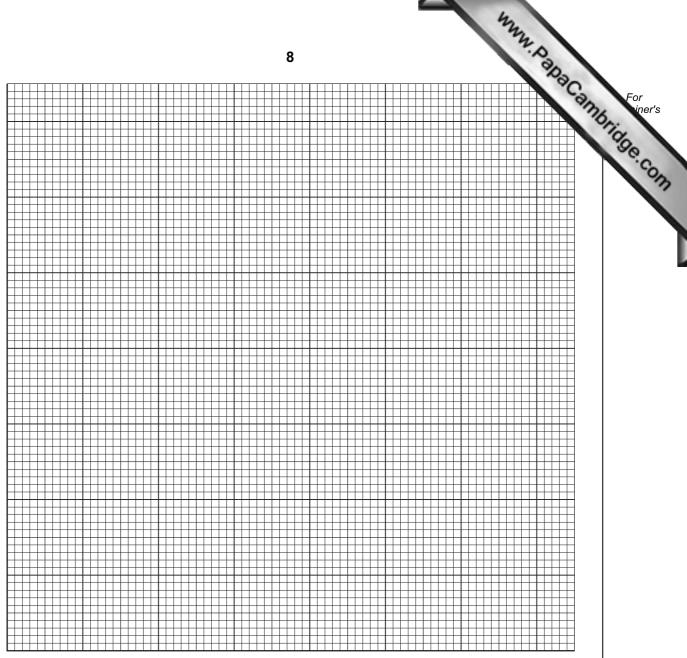

Record all your values in Table 2.2.

Table 2.2

d₁in water/mm	d₂in liquid P/mm

[3]

(c) On the grid provided on page 8 (Fig. 2.2), plot a graph of d_1 (vertical axis) against d_2 . Draw the best straight line through your points.

[4]

Fig. 2.2

(d) Calculate the gradient of the line, indicating on your graph the values chosen to enable you to do this. The gradient is numerically equal to the density of liquid P in grams per cubic centimetre.

> gradient of line = [3]

(e)	Describe another method for finding the density of liquid P using a pipette or bubbalance and a suitable container. You do not have to carry out the experiment.	Cambrida

For iner's

3	solu	ution		ns of the same acid but h of the acid solutions acid.		ns. You will use ed. You will also c	Car
	(a)	Using the dropping pipette provided, and no other apparatus, estimate the volume of a single drop of liquid.					
				\	volume of 1 drop =	cm ³	[1]
	(b)	(i)	2 drops of the	all measuring cylinder, indicator. Use the drop the drops, Shake the t	oping pipette to add the	e alkali, A , a drop a	at a
			Record the nu	mber of drops in Table	3.1.		
		(ii)	Repeat the pro	ocedure using solution,	Y , and then Z .		
			Record the nu	mber of drops in Table	3.1.		
				Tabl	e 3.1		
				solution	number of drops		
				х			
				Y			
				Z			
						_	[3]
	(c)	Wh	ich of the solution	ons is the most concent	rated? Explain your an	swer.	
							[1]
	(d)			of solution X in a test-tu wing splint and a lighted		gnesium. Test any ç	gas
		Red	cord your obser	vation and name the ga	s given off.		
		glo	wing splint				
		liah	ted splint				

name of the gas

[3]

	my	
	11	
(e)	Place about 2 cm³ of solution X in a test-tube and add a few drops of aqueous nitrate. Record your observation and name the acid in solution X . observation	Can
	Record your observation and name the acid in solution X .	
	observation	
	name of the acid	[2]
(f)	Place about 2 cm³ of solution A in a test-tube. Add a little solid ammonium chloride a warm gently. Test the gas with litmus paper.	and
	Record your observation and name the gas.	
	observation	
	name of the gas	[2]
(g)	Describe a different experiment using magnesium ribbon to enable you to find which of the acid solutions \mathbf{X} , \mathbf{Y} and \mathbf{Z} is the most concentrated. You do not have carry out the experiment.	
		[3]

CHEMISTRY PRACTICAL NOTES

Test for anions

Test for anions	12 CHEMISTRY PRACTICAL NO	TES test result
anion	test	test result
carbonate (CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide produced
chloride (C <i>l</i> ·) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
nitrate (NO ₃ -) [in solution]	add aqueous sodium hydroxide then aluminium foil; warm carefully	ammonia produced
sulfate (SO ₄ ²⁻) [in solution]	acidify then add aqueous barium chloride <i>or</i> aqueous barium nitrate	white ppt.

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
ammonium (NH ₄ ⁺)	ammonia produced on warming	-
copper(II) (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution

Test for gases

gas	test and test results	
ammonia (NH ₃)	turns damp red litmus paper blue	
carbon dioxide (CO ₂)	turns limewater milky	
chlorine (Cl ₂)	bleaches damp litmus paper	
hydrogen (H ₂)	"pops" with a lighted splint	
oxygen (O ₂)	relights a glowing splint	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.