UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.papacambridge.com MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

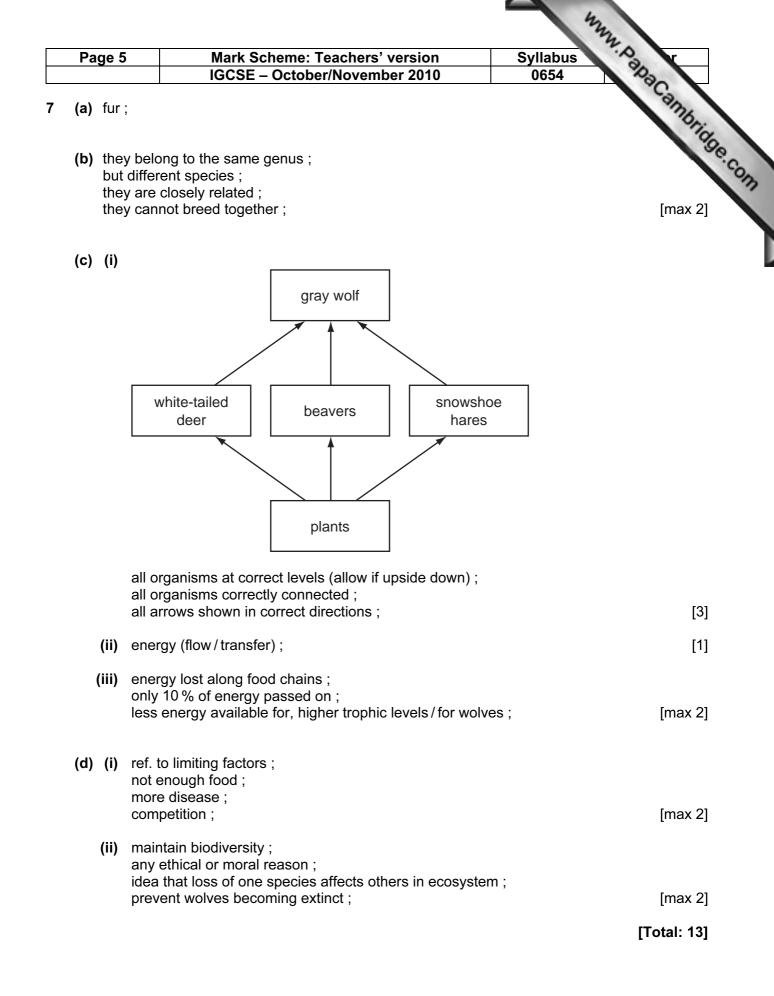
0654 CO-ORDINATED SCIENCES

0654/21

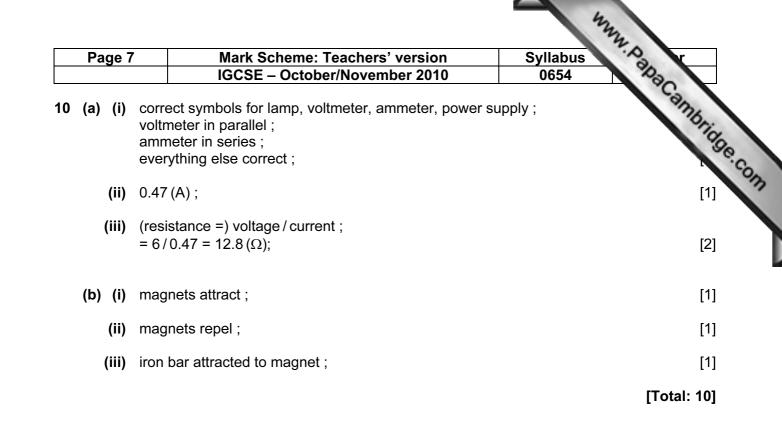
Paper 2 (Core Theory), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.


CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.


2	Syllabus 🔪			me: Teachers			2	ge 2	Ра
1230	0654	010	nber 20	ctober/Nover	GCSE – O				
amp								(i)	(a)
www.panacambrid oxygen	starch / drate / + ar	/glucose carbohy suga	$] \rightarrow$	water	+	dioxide	arbon c	ca	
[2]				correct ;;	each side	mark for	one		
[2]		water ;	ne with	oxide to combi		vide) ene t) allows		(i)	(b)
[max 2]			yll ;	tains chloroph	plasts / con	-	thin man	(ii)	
ny three in correct [3]	ice 2 marks, any	rect sequen	in corr	arks, any four	ect for 3 m	, C , E , A ïve corre ience 1 r	(all f	(i)	(c)
[2]		elsewhere ;		shown on diag aper was, blue				(ii)	
[Total: 11]									
[1]						ogen ;	hydr	(i)	(a)
[1]					pops ;	ed splint	lighte	(ii)	
[1]	unreactive ;	ic) acid/is ι	rochlor	vith dilute (hyc	not react w	oer does		(iii)	(
[2]		quency ;		er / lower collis · surface area				(iv)	
[1]			р;	/been used u	all reacted	acid had	the a	(i)	(b)
[1]						sulfate ;	zinc	(ii)	
[max 2]				s (and reacts) -metal oxide ; (slightly) acidi	le is a non	on dioxic	carb	(i)	(c)
growth ; [2]	ed for (healthy) g			issolve (from t ntial minerals/				(ii)	
U / L									

Page 3	Mark Scheme: Teachers' version Syllabus	
	IGCSE – October/November 2010 0654	
mo quie	Mark Scheme: Teachers' version Syllabus IGCSE – October/November 2010 0654 itudinal ; ement ; kly ; uum ; version trical energy into chemical energy :	Still
(b) <u>elec</u>	<u>trical</u> energy into <u>chemical</u> energy ;	[1]
(c) (i)	microwaves, infra-red, ultraviolet, X-rays, gamma ;	[1]
(ii)	correct use ;	[1]
	[Total:	: 7]
(a) (i)	C ₈ H ₁₈ ;	[1]
(ii)		
	(octane) + oxygen - Carbon dioxide + water	
	LHS ;	[2]
(iii)	nitrogen is in the air / enters with the air / owtte ; nitrogen does not burn / react / change / is unreactive ;	[2]
(iv)	heat comes from the burning fuel / combustion of the fuel is exothermic / there is an exothermic reaction (inside engine) / heat is conducted from where the fuel is burning ;	[1]
(b) (i)	6; 6;	[2]
(ii)	Si/Ge/Sn/Pb;	[1]
(c) (i)	alloy contains more than one element / is a mixture / other correct ;	[1]
(ii)	high strength for safety / resist breakage / because high forces on airframe in flight ; low density to reduce weight / reduce fuel cost ;	[2]
	[Total:	121

Page 4	4	Mark Scheme: Teachers' version	Syllabus Syllabus
		IGCSE – October/November 2010	0654 230
(a) rec	-	\$;	Sing.
	erves ; fectors		1
01.5	0010.0	,	
(b) (i)	chan	nges starch ;	Syllabus 0654 Papacamphic
• •		altose / sugar ;	[2]
(ii)		uces small molecules (from large ones);	
		nat the (small) molecules / particles / nutrients can b blood / through gut wall ;	be absorbed ;
		ney can be used by cells / builds new cells ;	[max 2]
(iii)	peris	stalsis ·	
\ <i>i</i>		to muscle contraction / circular and longitudinal mu	uscles ; [2]
			[Total: 9]
(a) (i)	40 (m	n/s);	[1]
(ii)		$= \frac{1}{2} \text{mv}^2$;	
	$= \frac{1}{2}$	× 2 × 1600 = 1600 (J) ; (ecf)	[2]
(b) dis	stance	= speed × time ;	
		25 seconds = 82.5 (m);	[2]
(a) da	a a ity a		
		= mass / volume ; 700 = 2.86 ;	
g/(cm ³ ; ((or 2860 kg / m ³)	[3]
(d) (i)	Geia	ger counter/Geiger-Müller tube/any other suitable	e; [1]
	-		Σ, ι.
(ii)		ses ionisation within cells ; ation ;	
	canc	cer;	
		ation burns / burns skin ;	
		ages / kills cells / damages DNA ; ation sickness ;	[max 1]
			[Total: 10]

	Mark Scheme: Teachers' version	Syllabus	·A ·
	IGCSE – October/November 2010	0654	Par
vection ;) by one
	of energy needed to heat up one kilogram o (Celsius) ;	f (water/a material) by one [1]
	=) energy / time ;) / 600 = 117 (W) ;		[2]
coal/oil	/gas;		[1]
running	out/carbon dioxide emissions/sulfur dioxide;		[1]
solar/w	ind / tides / hydroelectric power / waves etc. ;		[max 1]
inition) e	a oxidation refers to reaction with / bonded wit	h oxvaen :	[Total: 7]
ntext) e.g CuO sh Cu₂O sh	e.g. oxidation refers to reaction with / bonded wit g. oxygen has reacted / bonded with copper / cop ows there is one copper atom for every oxygen hows there are two copper atoms for every oxygen e twice as many copper atoms for every oxygen	oper gains oxygen ; atom ; gen atom ;	[max 1]
CuO sho CuO sho Cu ₂ O sh there ar	b. oxygen has reacted / bonded with copper / cop ows there is one copper atom for every oxygen	oper gains oxygen ; atom ; gen atom ; n atom in Cu ₂ O ;	[Total: 7] [max 1] [max 2] [1]
CuO sho Cu ₂ O sh there an coloured	g. oxygen has reacted / bonded with copper / cop ows there is one copper atom for every oxygen hows there are two copper atoms for every oxygen e twice as many copper atoms for every oxygen	oper gains oxygen ; atom ; gen atom ; n atom in Cu ₂ O ;	[max 1] [max 2]
CuO she Cu ₂ O sh there an coloured anode a atom un ion has	g. oxygen has reacted / bonded with copper / cop ows there is one copper atom for every oxygen hows there are two copper atoms for every oxygen e twice as many copper atoms for every oxygen d compounds / variable valency / ionic charge / o	per gains oxygen ; atom ; gen atom ; n atom in Cu ₂ O ; xidation state ;	[max 1 [max 2] [1 [2
CuO sho Cu ₂ O sh there an coloured anode a atom un ion has atom pro	g. oxygen has reacted / bonded with copper / cop ows there is one copper atom for every oxygen hows there are two copper atoms for every oxygen the twice as many copper atoms for every oxygen d compounds / variable valency / ionic charge / o and electrolyte clearly labelled ; incharged, ion charged ; filled outer shell, atom outer shell not complete oton number equal to electron number – unequ	per gains oxygen ; atom ; gen atom ; n atom in Cu ₂ O ; xidation state ;	[max 1 [max 2 [1
CuO sho Cu ₂ O sho Cu ₂ O sho there are coloured anode a atom un ion has atom pro- damp lit	g. oxygen has reacted / bonded with copper / cop ows there is one copper atom for every oxygen hows there are two copper atoms for every oxygen to write as many copper atoms for every oxygen d compounds / variable valency / ionic charge / o and electrolyte clearly labelled ; incharged, ion charged ; filled outer shell, atom outer shell not complete oton number equal to electron number – unequ timus / indicator paper ; hed ;	per gains oxygen ; atom ; gen atom ; n atom in Cu ₂ O ; xidation state ;	[max 1 [max 2 [1 [2 [max 1

