UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.papaCambridge.com MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

0654 CO-ORDINATED SCIENCE

0654/52

Paper 5 (Practical), maximum raw mark 45

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus Syllabus
	IGCSE – October/November 2010	0654
	ses recorded correctly ; (5–15 g to at least 1 decima le of juice recorded correctly ;	Syllabus 0654 al point)
	e headings correct including units (at least once) ; e laid out correctly ;	
calculati calculati	on correct for tube 1 ; on correct for tube 2 ; on correct for tube 3 ;	
	on correct for tube 4 ; is increase, not greater than 10 %)	
· · /	nswer from student's data ; reatest loss in mass, or greatest proportional loss ;	
• •	er instead of juice ; e protein would have lost mass anyway ;	
weigh pr	ame experiment with protein and acid ; otein before and after experiment ; e masses to see if any mass lost ;	
neutralis weigh pr	<i>ve answer:</i> e acid in juice ; otein before and after ; still lost, then its protease and not acid ;	
		[Total: 1

	3	Mark Scheme	e: Teacher	s' version		Syllabus	
		IGCSE – October/November 2010			0654	Dar	
(a) (i)	value of d_1 must be less than d_2 but greater than $d_2/2$; (if clearly in cm do not give mark)					abaCambrida [1]	
(ii)	value of \mathbf{d}_2 (should be close to supervisor value if no note about size of blocks differing) ;				[1]		
(iii)		correct calculation of $\mathbf{d}_2 / \mathbf{d}_1$ ((at least 1 decimal point recorded), any rounding up must be correct) ;					[1]
(b) (i)							
	i°	sine <i>i</i>	r°	sine r			
	0	0.00					
	0	0.17					
	20	0.34					
	30	0.50					
	40	0.64			;		
(ii)	<i>r</i> value incr 4 readings	alues greater tl ease with incre of r ; e r values put ir	asing <i>i</i> ;	ng <i>i</i> value ;			[4] [1]
(c) (i)	scales mus (0,0) plotted at least 3 p	be labelled with t be marked cle d or line throug oints must be p nt line through p	early and m h zero lotted withi	nust be linear		zontal ;	[4]
(c) (i) (ii)	scales mus (0,0) plotted at least 3 p best straigh correct valu rounding ;	t be marked cle d or line throug oints must be p nt line through p ue of gradient	early and m h zero lotted withi points ; ignoring de	iust be linear in ½ square ; ecimal places	; ; ; but i	zontal ; not allowing incorrect on sides of triangle ;	
	scales mus (0,0) plotted at least 3 p best straigh correct valu rounding ; working can it is the ave	t be marked cle d or line throug oints must be p at line through p ue of gradient n be fraction or	early and m h zero lotted withi points ; ignoring de triangle on l readings/	iust be linear in ½ square ; ecimal places graph with fig idea of more	; but i gures	not allowing incorrect	:

Page 4	Mark Scheme: Teachers' version	Syllabus r
	IGCSE – October/November 2010	0654
·		S

3 (a)

a)		3						
	solution	observation on adding sodium carbonate	conclusion the solution must have the following present	possible identity				
	Α	fizzes / bubbles / effervesces	acid / H⁺	HC1 HNO3				
	В	no reaction / solid dissolves	no acid / no H⁺	NaC1 KNO₃				
	С	no reaction / solid dissolves	no acid / no H⁺	NaC <i>l</i> KNO ₃				
	D	fizzes / bubbles / effervesces	acid / H⁺	HC1 HNO3				

whole observation column correct ; whole conclusion column correct ;

the two possible identities for each solution ;;;;;

[6]

(b)

solution	observation on adding silver nitrate solution	conclusion the solution must have the following present	identity of solution		
Α	white ppt/white solid	chloride / C l^-	HC1/hydrochloric acid		
В	white ppt/white solid	chloride / C l^-	NaC1/sodium chloride		
С	no reaction / remains colourless	no chloride / no Cl	KNO ₃ /potassium nitrate		
D	no reaction / remains colourless	no chloride / no Cl	HNO_3 / nitric acid		

whole observation column correct ; whole conclusion column correct ; the correct identity for each solution ;;;;

[6]

[3]

 (c) add aqueous sodium hydroxide / NaOH, plus aluminium / Al, plus warm / heat ; damp red litmus (paper) in gas / mouth of test tube ; litmus turns blue (if states ammonia given off without test, allow 1 mark);

[Total: 15]