## CANDIDATE NAME


CENTRE NUMBER

|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |

CANDIDATE NUMBER $\square$

## CO-ORDINATED SCIENCES

0654/23
Paper 2 (Core)
October/November 2010
2 hours
Candidates answer on the Question Paper.
No Additional Materials are required.

## READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams, graphs, tables or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all questions.
A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [ ] at the end of each question or part question.

| For Examiner's Use |  |
| :---: | :--- |
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |
| 7 |  |
| 8 |  |
| 9 |  |
| 10 |  |
| Total |  |

This document consists of $\mathbf{2 2}$ printed pages and $\mathbf{2}$ blank pages.

1 Fig. 1.1 shows a section through the human thorax.


Fig. 1.1
(a) On the diagram, use label lines to label each of the following structures:
the trachea
the heart
a bronchiole
(b) List the structures through which blood passes as it flows from the heart to the lungs and back to the heart again.

Choose from these words:
aorta artery capillaries left atrium left ventricle
pulmonary artery pulmonary vein right atrium right ventricle vena cava

The first structure has been done for you.
1
right ventricle

2

3

4

5 $\qquad$
(c) Describe how the blood transports oxygen.
$\qquad$
$\qquad$
$\qquad$
(d) Describe how oxygen is supplied to a developing fetus in its mother's uterus.
$\qquad$
$\qquad$
$\qquad$

2 In electrochemical cells (batteries), electrical energy is obtained from chemical reactic
(a) Fig. 2.1 shows some uses of electrochemical cells.


Fig. 2.1
(i) Electrochemical cells like those in Fig. 2.1 have to be replaced when they have stopped working.

Explain briefly what has happened inside the cells to cause them to stop working.
$\qquad$
$\qquad$
(ii) State one reason why different cells are used in the watch and the torch (flashlight).
$\qquad$
(b) Some types of digital clocks use electrical energy which is obtained electrochemical cell. These cells can be made by placing metal electrodes potato.

Fig. 2.2 shows a simplified diagram of such a clock.


Fig. 2.2
(i) Suggest why a potato can be used as part of an electrochemical cell.
$\qquad$
$\qquad$
(ii) State how the voltage supplied by the cell can be changed.
$\qquad$
$\qquad$
(c) Some modern cars, known as hybrids, have two engines.

In one of these engines, hydrocarbon fuel is burnt to provide the energy required move the car. In the other, electrical energy is provided by a powerful electrochemical cell.

At lower speeds, the electric engine drives the car and the other engine is switched off.
(i) Name a liquid hydrocarbon which is used as car fuel.
(ii) Name the process which is used to separate car fuel from petroleum.
$\qquad$
(iii) Name two compounds which are produced when hydrocarbon fuel is burnt in a car engine.

1

2
(iv) Suggest why air pollution in towns and cities might be reduced if hybrid cars replaced ordinary cars.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

3 (a) A student wrote down some properties of alpha, beta and gamma radiations.
Draw a line from each property to the correct radiation.
property

passes through paper but stopped by a few millimetres of aluminium

gamma
stopped by paper
(b) Alpha, beta and gamma radiations are known as ionising radiations.
(i) Explain the meaning of the term ionising radiation.
$\qquad$
$\qquad$
(ii) Explain why alpha radiation is more effective at ionising than beta radiation.
$\qquad$
(iii) State two effects of ionising radiation on the human body.

4 Nitrogen compounds in soil are taken up by growing crops.
Fig.4.1 shows two ways in which nitrogen compounds may be added to soil used growing crops.


Fig. 4.1
(a) (i) State the meaning of the term nitrogen fixation.
$\qquad$
$\qquad$
(ii) Outline one way in which nitrogen fixation occurs.
$\qquad$
$\qquad$
$\qquad$
(iii) Explain why nitrogen molecules taken directly from the air cannot be used by most growing crops.
$\qquad$
(b) Table 4.1 shows how much of three elements, nitrogen, phosphorus and pot was removed from the soil by different crops. In this table, the elements are show their chemical symbols.

Table 4.1

| crop | mass removed in kg/hectare |  |  |
| :---: | :---: | :---: | :---: |
|  | $\mathbf{N}$ | $\mathbf{P}$ | $\mathbf{K}$ |
| oats | 72 | 13 | 18 |
| sugar beet | 86 | 14 | 302 |
| wheat | 115 | 22 | 26 |

(i) State the crop in Table 4.1 which took up the highest mass of potassium per hectare.
(ii) The sugar beet was planted in a field of 2.5 hectares.

Calculate the combined mass of nitrogen and phosphorus taken up by the crop of sugar beet.

Show your working.
(c) The nitrogen in NPK fertiliser exists in the form of compounds such as th ammonium nitrate, $\mathrm{NH}_{4} \mathrm{NO}_{3}$, and diammonium phosphate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$.

Ammonium nitrate is made by reacting ammonia with nitric acid.
(i) Name the type of chemical reaction which occurs between ammonia and nitric acid.
(ii) State the total number of atoms which are shown combined in the formula of diammonium phosphate.
(iii) Describe a chemical test to show whether a solution contains ammonium ions.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(d) Starch molecules are polymers of glucose.
(i) Draw a small section of a molecule of starch, using the symbol

(ii) Name the elements that are combined in glucose.

Please turn over for Question 5.

5 (a) A student investigated the relationship between the potential difference across and the current in the lamp.
(i) List the apparatus she would need to carry out this investigation.
$\qquad$
$\qquad$

Fig. 5.1 shows a graph of the results of this investigation.


Fig. 5.1
(ii) Calculate the resistance of the lamp when the current was 0.6 A . State the formula that you use and show your working. formula used working
(b) (i) The generator at a power station supplies a current of 50 A at a voltage of 25000 V .

Use the formula

$$
\text { power }=\text { voltage } \times \text { current }
$$

to calculate the power output of the generator.
Show your working.
(ii) Electrical energy is transmitted along cables at a very high voltage of 400000 V .

Explain how this reduces the cost of supplying the electricity. Use the ideas of energy loss and current in your answer.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(iii) State two properties of aluminium which make it suitable for overhead power cables.

6 Fig. 6.1 shows two plant cells. One has been placed in a blue dye and the other dye.


Fig. 6.1
(a) (i) Name the part of the cell that has been stained by each dye.
the blue dye $\qquad$
the red dye
(ii) Which dye(s) has passed through a cell membrane? Tick the correct box.
$\square$ neither blue or red
$\square$ both blue and red

blue only
$\square$ red only
(iii) Which dye(s) would stain part of an animal cell? Tick the correct box.
$\square$ neither blue or red
$\square$ both blue and red

$\square$ red only
(b) (i) Cells from the palisade layer of a leaf contain structures not shown in Fig. 6

These structures contain a green pigment that absorbs energy from sunlight. Th energy is used to help the plant to make its own food.

On the cell in blue dye in Fig. 6.1, draw and name one of these structures.
(ii) Describe how a plant makes its own food.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(iii) Explain how the process you have described in (ii) benefits animals.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

7 An athlete is running in a sprint race.
(a) Fig. 7.1 shows the athlete's speed during the race.


Fig. 7.1
(i) Describe the athlete's motion between $\mathbf{B}$ and $\mathbf{C}$.
$\qquad$
$\qquad$
(ii) Describe the athlete's motion between $\mathbf{C}$ and $\mathbf{D}$.
$\qquad$
$\qquad$
(b) Complete the sentence by choosing suitable words.

As the athlete runs, the $\qquad$ energy in the food he has eaten
changes to $\qquad$ energy and heat energy.
(c) At the end of the race, evaporation helps to cool the athlete.
(i) Use the idea of particles to explain how evaporation helps the athlete to cool down.
$\qquad$
$\qquad$
(ii) At the end of a long race, an athlete may be wrapped in a shiny foil bla prevent him cooling down too quickly.

Explain how the shiny foil blanket helps reduce energy losses. Use ideas about conduction, convection and radiation in your answer.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

8 (a) The disease cystic fibrosis is caused by a recessive allele, $f$, of a gene. The syn the normal, dominant allele is $\mathbf{F}$.
(i) State the genotype of a person with cystic fibrosis.
iner's
(ii) State the phenotype of a person who is heterozygous for cystic fibrosis.
(iii) Explain why a person who has the alleles FF cannot have a child with cystic fibrosis.

You can use a genetic diagram as part of your answer if it helps your explanation.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(b) A person with cystic fibrosis often has a blockage of the duct that leads from the pancreas into the alimentary canal.

This duct usually carries pancreatic juice, which contains the enzymes amylase, protease and lipase.
(i) Describe the function of amylase.
$\qquad$
$\qquad$
(ii) Explain why a person with a blocked pancreatic duct will not be able to absorb as many nutrients from their food as a person with a normal pancreatic duct.
$\qquad$
$\qquad$
$\qquad$

9 Fig. 9.1 shows the driving force and frictional force acting on a car of mass travelling at a constant speed of $18 \mathrm{~m} / \mathrm{s}$.


Fig. 9.1
(a) (i) Calculate the distance travelled in one minute.
$\qquad$ m
(ii) Calculate the work done by the driving force in one minute.

State the formula that you use and show your working.
formula used
working
$\qquad$
(b) Explain, in terms of forces, why the car is travelling at a constant speed.
$\qquad$
$\qquad$
(c) Fig. 9.2 shows a car on a hydraulic lift in a garage. The total weight being 18000 N . The lift uses four large pistons. Each large piston has an area of $0.03 \mathrm{~m}^{2}$ smaller piston $\mathbf{X}$ has an area of $0.01 \mathrm{~m}^{2}$.


Fig. 9.2
(i) Calculate the total area of the four large pistons.
$\qquad$
(ii) Use the formula
pressure = force / area
to calculate the pressure in the hydraulic fluid used in the lift.
Show your working.
$\qquad$ $\mathrm{N} / \mathrm{m}^{2}$
(iii) This pressure is caused by piston $\mathbf{X}$.

Calculate the minimum force which piston $\mathbf{X}$ must exert to lift the car.
Show your working.

BLANK PAGE

Please turn over for Question 10.

10 Table 10.1 shows some properties of five elements, $\mathbf{P}$ to $\mathbf{T}$. The code letters are chemical symbols of the elements.

Table 10.1

| element <br> code letter | melting point <br> $/{ }^{\circ} \mathbf{C}$ | boiling point <br> $/{ }^{\circ} \mathrm{C}$ | conduction of <br> electricity | number of outer <br> electrons in an <br> atom |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{P}$ | -89 | -186 | insulator | 8 |
| $\mathbf{Q}$ | 650 | 1090 | conductor | 2 |
| $\mathbf{R}$ | -7 | 58 | insulator | 7 |
| $\mathbf{S}$ | 181 | 1342 | conductor | 1 |
| $\mathbf{T}$ | -220 | -188 | insulator | 7 |

Answer the following questions, using only the elements shown in the table.
(a) (i) State and explain which elements are from the same group of the Periodic Table.
elements
explanation $\qquad$
$\qquad$
(ii) State and explain which elements are metals.
elements $\qquad$
explanation $\qquad$
(iii) State and explain which elements are gases at a room temperature of $20^{\circ} \mathrm{C}$. elements $\qquad$
explanation $\qquad$
(b) Fig. 10.1 shows atoms of the two elements $\mathbf{R}$ and $\mathbf{S}$. Only the outer electron sh shown.


Fig. 10.1
When element $\mathbf{R}$ reacts with element $\mathbf{S}$ the atoms of both elements change and become ions.
(i) Describe, in terms of electrons, how an atom of element $\mathbf{S}$ would change into an ion.
$\qquad$
$\qquad$
(ii) Predict and explain whether the compound formed between elements $\mathbf{S}$ and $\mathbf{R}$ is likely to be a solid, liquid or gas at room temperature.

Explain your answer.
state
explanation $\qquad$
$\qquad$
$\qquad$
(c) The element bromine is produced when compounds dissolved in seawater react with chlorine.

The word equation for a typical reaction producing bromine is shown below.

$$
\text { chlorine }+ \text { sodium bromide } \longrightarrow \text { sodium chloride }+ \text { bromine }
$$

(i) State the colour change which would show that bromine is produced in this reaction.
$\qquad$
(ii) Explain briefly, in terms of reactivity, why these reactants produce bromine.
$\qquad$
$\qquad$
DATA SHEET
The Periodic Table of the
The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.).
The Periodic Table of the Elements

| DATA SHEET <br> The Periodic Table of the Elements |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\stackrel{\sim}{\sim}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Group |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 11 |  |  |  |  |  |  |  |  |  |  | III | IV | V | VI | VII | 0 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }_{2} \underset{\substack{4 \\ \text { Helium }}}{\substack{\text { He}}}$ |  |
| ${ }_{3}^{\mathrm{L}} \mathrm{c}_{\mathrm{Li}}^{\mathrm{Li}}$ | $\begin{gathered} 9 \\ \text { Be } \\ \text { Beylium } \end{gathered}$ |  |  |  |  |  |  |  |  |  |  | ${ }_{5}$B <br> B <br> Bron | ${ }_{6}{ }_{\text {Cataon }}^{\text {c }}$ | $\overbrace{7}^{\substack{\text { vicosen }}}$ | ${ }_{8} \mathrm{Oxpen}^{\text {¢ }}$ |  | ${ }_{10}{ }_{\text {coen }}^{\text {Nee }}$ |  |
| $\begin{gathered} 23 \\ \begin{array}{c} 23 \\ \text { Sodaim } \end{array} \\ \hline 10 \end{gathered}$ | $\underset{\substack{{ }^{24} \mathrm{Mg} \\ \mathrm{Mangsium}}}{ }$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }_{17}^{\substack{\text { Chatine }}}$ |  |  |
| $\sum_{\substack{\text { poassum } \\ 19}}^{39}$ | $\begin{gathered} 40 \\ { }_{20} \text { Cacium } \\ \text { Ca } \end{gathered}$ | $\underset{\substack{45 \\ \text { Scandium } \\ 21}}{\substack{45}}$ | ${ }_{\substack{\text { Tranium }}}^{\mathrm{Ti}_{2}}$ | $\underset{\substack{\text { Vanadum } \\ v_{2}}}{51}$ |  | $\begin{gathered} 55 \\ \mathbf{M n}_{\text {Mangese }} \\ 25 \end{gathered}$ | $\begin{array}{\|c} \text { 56 } \\ \text { Fe } \\ \text { Fen } \end{array}$ | $\begin{gathered} 59 \\ \text { Co } \\ \text { Cobant } \end{gathered}$ | $\begin{array}{\|c\|c\|} \hline 59 \\ { }_{28}^{\text {Nidele }} \end{array}$ | $\begin{gathered} 64 \\ { }_{29} \text { cuporer } \end{gathered}$ |  | $\underset{\substack{\text { Galium }}}{\substack{\text { Ga }}}$ |  |  |  | $\begin{gathered} 80 \\ { }_{3}^{80} \\ 3_{5}^{\text {Bromine }} \end{gathered}$ | $\begin{gathered} 84 \\ { }_{38} \mathrm{Krpron} \\ \hline \end{gathered}$ |  |
| $\begin{gathered} 85 \\ \begin{array}{c} \text { Rb } \\ \text { Rubbium } \end{array} \end{gathered}$ | $\begin{gathered} 88 \\ \begin{array}{c} 88 \\ \text { Srontium } \\ 38 \end{array} \end{gathered}$ | $\stackrel{\substack{89 \\ y_{9} \text { yruium }}}{ }$ | $\begin{gathered} { }_{40}^{91} \\ \mathrm{Z}_{4}^{\text {Zronium }} \end{gathered}$ | $\begin{gathered} 93 \\ \mathrm{Nb} \\ \mathrm{M} \text { Nobum } \end{gathered}$ | $\begin{gathered} 96 \\ \text { Mo } \\ \text { Moyboenum } \\ 42 \end{gathered}$ | $\underset{\substack{\text { Teane } \\ 43}}{\text { TTium }}$ |  | $\begin{array}{r} 103 \\ \text { Rh } \\ { }_{4} \text { Rhodium } \end{array}$ | $\begin{gathered} 106 \\ \text { Pd } \\ \text { Palladium } \end{gathered}$ | $\underset{\substack{\text { Sler } \\ \text { An }}}{\substack{108 \\ 4 .}}$ |  | $\begin{gathered} \begin{array}{c} 115 \\ \text { In } \\ \text { Indium } \end{array} \\ \hline \end{gathered}$ | $\underset{\substack{\text { 50 } \\ \text { Tin }}}{\substack{119 \\ \text { Sn }}}$ |  |  | ${ }_{53} \begin{gathered} 127 \\ \text { I Idine } \end{gathered}$ | $\begin{gathered} 131 \\ X_{\text {Xeonn }} \\ X_{4} \end{gathered}$ |  |
| $\begin{gathered} 133 \\ \left.\begin{array}{c} \text { CS } \\ 55 \\ 55 \end{array}\right) \end{gathered}$ | $\begin{array}{r} 137 \\ \text { Ba } \\ \text { B6aium } \end{array}$ | $\begin{gathered} \text { 139 } \\ \text { La } \\ \text { Lannhaum } \\ 57 \end{gathered}$ |  |  |  | $\begin{gathered} 186 \\ \text { Re } \\ \text { Renenium } \end{gathered}$ |  | $\begin{gathered} \begin{array}{c} 192 \\ \text { Ir } \\ 7{ }_{7} \text { ridium } \end{array} \\ \hline \end{gathered}$ | $\begin{array}{r} 195 \\ \begin{array}{c} \text { Pt } \\ 788^{\text {Painum }} \end{array} \\ \hline \end{array}$ | $\begin{array}{r} \text { 197 } \\ \text { Au } \\ \text { f90 } \end{array}$ | (er $\begin{gathered}\text { 201 } \\ \mathbf{H g} \\ 80 \\ \text { Mecury }\end{gathered}$ | ${ }_{\substack{\text { a }}}^{\substack{204 \\ \text { Tl } \\ \text { Thalum }}}$ | $\underbrace{\text { cead }}_{82}$ |  | $\underbrace{\text { Poonum }}_{84}$ | ${ }_{85}{ }_{\text {Asaine }}^{\text {At }}$ | ${ }_{88}^{\substack{\text { Redon }}}$ |  |
|  | $\square$ | $\begin{gathered} 227 \\ { }_{89} \begin{array}{c} \text { Actibium } \end{array} \\ \hline \end{gathered}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| *58-71 Lanthanoid series †90-103 Actinoid series |  |  |  | $\begin{gathered} 140 \\ \begin{array}{c} \text { Cexium } \\ \text { Ce } \end{array} \\ \hline 8 \end{gathered}$ |  | $\begin{gathered} 144 \\ \text { Nod } \\ \text { Noodymium } \\ 60 \end{gathered}$ | $\underset{\substack{\text { Ponenefium } \\ 61}}{\text { Pi }}$ |  | $\begin{gathered} 152 \\ \text { Eu } \\ 6_{6} \text { Eupoum } \end{gathered}$ |  | $\begin{gathered} 159 \\ \text { TV TV } \\ 65 \end{gathered}$ |  |  |  | $\begin{gathered} 169 \\ { }_{69} \mathrm{Tm}_{\text {Thuium }} \end{gathered}$ | ${ }^{\text {a }}$ | ${ }_{71}{ }_{\text {Luevium }}^{\text {Lus }}$ |  |
| Key |  | $\begin{aligned} & \mathrm{a}=\text { relative atomic mass } \\ & \mathrm{x}=\text { atomic symbol } \\ & \mathrm{b}=\text { proton (atomic) number } \end{aligned}$ |  |  |  | ${\underset{92}{\text { Uuanium }}}_{238}^{u_{0}^{20}}$ |  | $\underset{9_{4}^{\text {Punanum }}}{\mathrm{Pu}}$ |  |  |  | $\underset{\substack{\text { callaronium }}}{\text { Cf }}$ | $\underset{\substack{\text { Ensesenium } \\ g_{9}}}{\text { Es }}$ | $\underset{\substack{\text { Femum } \\ \text { Foomiun }}}{\substack{ \\\hline}}$ | $\begin{gathered} \text { Mand } \\ \text { Mondevium } \\ \text { Mo1 } \end{gathered}$ | $\underset{\substack{\mathrm{No} \\ \text { Nobesum } \\ 102}}{ }$ | $\begin{array}{\|c} \substack{\text { Leanencum } \\ \text { Los } \\ \hline} \end{array}$ |  |

