

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

IS RANDHIGGE.CS

+	
7	
7	
7	
^	
_	
7	
^	
×	
v	
•	

CANDIDATE NAME									
CENTRE NUMBER						CANDIDA NUMBER			

CO-ORDINATED SCIENCES

0654/23

Paper 2 (Core)

October/November 2010

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use						
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
Total						

This document consists of 22 printed pages and 2 blank pages.

HAMAN BARBIC AND For iner's

1 Fig. 1.1 shows a section through the human thorax.

Fig. 1.1

(a) On the diagram, use label lines to label each of the following structures:

the trachea

the heart

a bronchiole [3]

(b) List the structures through which blood passes as it flows from the heart to the lungs and back to the heart again.

Choose from these words:

aorta artery capillaries left atrium left ventricle pulmonary artery pulmonary vein right atrium right ventricle vena cava

The first structure has been done for you.

1	right ventricle
2	
3	
4	
5	

[4]

(c)	Describe how the blood transports oxygen.	*aCambrio
		[2]
(d)	Describe how oxygen is supplied to a developing fetus in its mother's uterus.	[2]
		[3]

For iner's

reactic For iner's

2 In electrochemical cells (batteries), electrical energy is obtained from chemical reaction

(a) Fig. 2.1 shows some uses of electrochemical cells.

Fig. 2.1

(i)	Electrochemical cells like those in Fig. 2.1 have to be replaced when they have stopped working.
	Explain briefly what has happened inside the cells to cause them to stop working.
	[1
(ii)	State one reason why different cells are used in the watch and the torch (flashlight).
	[1

www.PapaCambridge.com (b) Some types of digital clocks use electrical energy which is obtained freelectrochemical cell. These cells can be made by placing metal electrodes in potato.

Fig. 2.2 shows a simplified diagram of such a clock.

Fig. 2.2

(i)	Suggest why a potato can be used as part of an electrochemical cell.	
		 [1]
(ii)	State how the voltage supplied by the cell can be changed.	
		[1]

(c) Some modern cars, known as hybrids, have two engines.

www.PapaCambridge.com In one of these engines, hydrocarbon fuel is burnt to provide the energy required move the car. In the other, electrical energy is provided by a powerful electrochemical cell.

At lower speeds, the electric engine drives the car and the other engine is switched off.

	· · · · · · · · · · · · · · · · · · ·
(i)	Name a liquid hydrocarbon which is used as car fuel.
	[1]
(ii)	Name the process which is used to separate car fuel from petroleum.
	[1]
(iii)	Name two compounds which are produced when hydrocarbon fuel is burnt in a car engine.
	1
	2 [2]
(iv)	Suggest why air pollution in towns and cities might be reduced if hybrid cars replaced ordinary cars.
	[3]

For
viner's

[1]

3	(a)	A student wrote down some properties of alpha, beta and gamma radiations.
		Draw a line from each property to the correct radiation.

www.PapaCambridge.com radiation property has no charge has no mass alpha passes through paper but stopped by a few millimetres of aluminium beta passes through several centimetres of lead contains positively gamma charged particles stopped by paper [3] **(b)** Alpha, beta and gamma radiations are known as ionising radiations. (i) Explain the meaning of the term ionising radiation. [1] (ii) Explain why alpha radiation is more effective at ionising than beta radiation.

(iii) State two effects of ionising radiation on the human body.

1

2

4 Nitrogen compounds in soil are taken up by growing crops.

www.PapaCambridge.com Fig.4.1 shows two ways in which nitrogen compounds may be added to soil used it growing crops.

Fig. 4.1

(1)	State the meaning of the term <i>filtrogen fixation</i> .
	[1]
(ii)	Outline one way in which nitrogen fixation occurs.
	[2]
(iii)	Explain why nitrogen molecules taken directly from the air cannot be used by most growing crops.
	[1]

www.PapaCambridge.com (b) Table 4.1 shows how much of three elements, nitrogen, phosphorus and pota was removed from the soil by different crops. In this table, the elements are shown their chemical symbols.

Table 4.1

	mass removed in kg/hectare						
crop	N	Р	К				
oats	72	13	18				
sugar beet	86	14	302				
wheat	115	22	26				

(i)	State the crop in Table 4.1 which took up the highest mass of potassium per hectare.
	[1]
(ii)	The sugar beet was planted in a field of 2.5 hectares.
	Calculate the combined mass of nitrogen and phosphorus taken up by the crop of sugar beet.
	Show your working.
	kg [1]

(c)		e nitrogen in NPK fertiliser exists in the form of compounds such as the monium nitrate, NH_4NO_3 , and diammonium phosphate, $(NH_4)_2HPO_4$.	an
	Am	monium nitrate is made by reacting ammonia with nitric acid.	
	(i)	Name the type of chemical reaction which occurs between ammonia and nitracid.	ic
	(ii)	State the total number of atoms which are shown combined in the formula diammonium phosphate.	[1] of
		[[1]
	(iii)	Describe a chemical test to show whether a solution contains ammonium ions.	
			[3]
(d)	Sta	rch molecules are polymers of glucose.	
	(i)	Draw a small section of a molecule of starch, using the symbol	
		— G to represent a glucose molecule.	
		Į.	1]
	(ii)	Name the elements that are combined in glucose.	•
	` ,		1]

BLANK PAGE

Please turn over for Question 5.

www.PapaCambridge.com

- 5 (a) A student investigated the relationship between the potential difference across and the current in the lamp.
 - (i) List the apparatus she would need to carry out this investigation.

man	
udent investigated the relationship between the potential difference across the current in the lamp.	For iner's
List the apparatus she would need to carry out this investigation.	Oridie Con
[2	21

Fig. 5.1 shows a graph of the results of this investigation.

Fig. 5.1

		The state of the s	
		Calculate the resistance of the lamp when the current was 0.6 A. State the formula that you use and show your working. formula used working	
	(ii)	Calculate the resistance of the lamp when the current was 0.6 A.	-or
		State the formula that you use and show your working.	ner
		formula used	9.0
		working	
		ohms [2]	
(b)	(i)	The generator at a power station supplies a current of 50 A at a voltage of 25 000 V.	
		Use the formula	
		power = voltage × current	
		to calculate the power output of the generator.	
		Show your working.	
		W [1]	
	(ii)	Electrical energy is transmitted along cables at a very high voltage of 400 000 V.	
		Explain how this reduces the cost of supplying the electricity. Use the ideas of energy loss and current in your answer.	
		[3]	
	(iii)	State two properties of aluminium which make it suitable for overhead power cables.	
		1	

ne other II. For iner's

6 Fig. 6.1 shows two plant cells. One has been placed in a blue dye and the other in dye.

Fig. 6.1

	9	
(a) (i)	Name the part of the cell that has been stained by each dye.	
	the blue dye	
	the red dye	[2]
(ii)	Which dye(s) has passed through a cell membrane? Tick the correct box.	
	neither blue or red	
	both blue and red	
	blue only	
	red only	[1]
(iii)	Which dye(s) would stain part of an animal cell? Tick the correct box.	
	neither blue or red	
	both blue and red	
	blue only	
	red only	[1]

	May
	Cells from the palisade layer of a leaf contain structures not shown in Fig. 6. These structures contain a green pigment that absorbs energy from sunlight. The
(b) (i)	Cells from the palisade layer of a leaf contain structures not shown in Fig. 6.
	These structures contain a green pigment that absorbs energy from sunlight. The energy is used to help the plant to make its own food.
	On the cell in blue dye in Fig. 6.1, draw and name one of these structures. [2]
(ii)	Describe how a plant makes its own food.
	[3]
(iii)	Explain how the process you have described in (ii) benefits animals.
	[3]

time/s

(a) Fig. 7.1 shows the athlete's speed during the race.

www.PapaCambridge.com 12 10 8 6 2 16 20 22 6 10 18 24

Fig. 7.1

(i) Describe the athlete's motion between **B** and **C**. (ii) Describe the athlete's motion between C and D. **(b)** Complete the sentence by choosing suitable words. As the athlete runs, the _____ energy in the food he has eaten changes to _____ energy and heat energy. [2] (c) At the end of the race, evaporation helps to cool the athlete. (i) Use the idea of particles to explain how evaporation helps the athlete to cool down.

(ii)	At the end of a long race, an athlete may be wrapped in a shiny foil bland prevent him cooling down too quickly.
	Explain how the shiny foil blanket helps reduce energy losses. Use ideas about conduction, convection and radiation in your answer.
	[3]

(a)		e disease cystic fibrosis is caused by a recessive allele, f , of a gene. The synnormal, dominant allele is F .
	(i)	State the genotype of a person with cystic fibrosis.
		[1]
	(ii)	State the phenotype of a person who is heterozygous for cystic fibrosis.
		[1]
	(iii)	Explain why a person who has the alleles FF cannot have a child with cystic fibrosis.
		You can use a genetic diagram as part of your answer if it helps your explanation.
		[6]
		[3]
(b)		person with cystic fibrosis often has a blockage of the duct that leads from the acreas into the alimentary canal.
		s duct usually carries pancreatic juice, which contains the enzymes amylase, tease and lipase.
	(i)	Describe the function of amylase.
		[2]
	(ii)	Explain why a person with a blocked pancreatic duct will not be able to absorb as many nutrients from their food as a person with a normal pancreatic duct.
		[2]

Fig. 9.1 shows the driving force and frictional force acting on a car of mass travelling at a constant speed of $18\,\text{m/s}$. 9

Fig. 9.1

(a)	(i)	Calculate the distance travelled in one minute.

														m	[1]
	(ii)	Cal	culate th	ne work	done l	by the	drivin	g force	e in on	e min	ute.				
		Stat	te the fo	rmula t	nat you	ı use	and sh	now yo	ur woı	rking.					
			formula	used											
			working	9											
														J	[2]
(b)	Exp	olain,	in term	s of for	ces, wh	ny the	car is	travell	ing at	a con	ıstant	speed	l.		
										•••••					[1]

(c) Fig. 9.2 shows a car on a hydraulic lift in a garage. The total weight being 18 000 N. The lift uses four large pistons. Each large piston has an area of 0.03 m². smaller piston **X** has an area of 0.01 m².

[2]

.....N

	Fig. 9.2	
(i)	Calculate the total area of the four large pistons.	
	m ²	[1]
(ii)	Use the formula	
	pressure = force / area	
	to calculate the pressure in the hydraulic fluid used in the lift.	
	Show your working.	
	\sim N/m ²	[1]
iii)	This pressure is caused by piston X .	
	Calculate the minimum force which piston X must exert to lift the car.	
	Show your working.	

BLANK PAGE

Please turn over for Question 10.

www.PapaCambridge.com

		some properties of the elements.	22 of five elemen Table 10.	ts, P to T . The c	ode letters are number of outer electrons in an	a Cambril
	element code letter	melting point /°C	boiling point	conduction of electricity	number of outer electrons in an atom	
	Р	-89	-186	insulator	8	
	Q	650	1090	conductor	2	
	R	-7	58	insulator	7	
	s	181	1342	conductor	1	
	Т	-220	-188	insulator	7	

Answer the following questions, using **only** the elements shown in the table.

(a)	(i)	 State and explain which elements are from the same group of the Periodic Table 					
		elements					
		explanation					
			[1]				
	(ii)	State and explain which elements are metals.					
		elements					
		explanation					
			[1]				
	(iii)	State and explain which elements are gases at a room temperature of 20 °C.					
		elements					
		explanation					
			[1]				

(b) Fig. 10.1 shows atoms of the two elements **R** and **S**. Only the outer electron shown.

Fig. 10.1

When element ${\bf R}$ reacts with element ${\bf S}$ the atoms of both elements change and become ${\bf ions}$.

	(i)	Describe, in terms of electrons, how an atom of element ${\bf S}$ would change into an ion.					
		[1]					
	(ii)	Predict and explain whether the compound formed between elements ${\bf S}$ and ${\bf R}$ is likely to be a solid, liquid or gas at room temperature.					
		Explain your answer.					
		state					
		explanation					
		[3]					
(c)		e element bromine is produced when compounds dissolved in seawater react with orine.					
	The	e word equation for a typical reaction producing bromine is shown below.					
	chlorine + sodium bromide — → sodium chloride + bromine						
	(i)	State the colour change which would show that bromine is produced in this reaction.					
		[1]					
	(ii)	Explain briefly, in terms of reactivity, why these reactants produce bromine.					
		[1]					

The Periodic Table of the Elements DATA SHEET

								1	
	0	4 He Helium	19	40 Ar Argon	84 Krypton 36	131 Xe Xenon	Radon 86		175 Lu Lutetium
	IIA		19 T Fluorine	35.5 C1 Chlorine	80 Br Bromine	127 I lodine 53	At statine		Yb Ytterbium
	IN		16 Oxygen	32 Sulfur	79 Se Selenium	128 Te Tellurium 52			169 Tm
	^		14 Nitrogen 7	31 P Phosphorus 15	75 AS Arsenic	122 Sb Antimony 51			167 Er Erbium
	N		12 Carbon	28 Si Silicon	73 Ge Germanium	30 Tin 10			165 Ho lmium
	III		11 Boron 5	27 A1 Aluminium	70 Ga Gallium 31	115 In Indium	204 T 1 Thallium		162 Dy Dysprosium
						112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium
						Ag Silver	197 Au Gold		157 Gd Gadolinium
Group					59 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium
Gre					59 Co Cobalt	103 Rh Rhodium 45	192 I r Iridium 77		150 Sm Samarium
		1 Hydrogen			56 Iron	Ruthenium	190 Os Osmium 76		Pm Promethium
					Mn Manganese	Tc Technetium 43	186 Re Rhenium 75		144 Nd Neodymium
					Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium
					51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum		140 Ce Cerium
					48 T ttanium 22	91 Zr Zirconium 40	178 # Hafnium		
					Scandium	89 ~ Yttrium 39	139 La Lanthanum s	227 AC Actinium 89	series eries
	=		Be Beryllium	24 Mg Magnesium	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series
	_		7 Li Lithium	23 Na Sodium	39 K Potassium 19	Rb Rubidium 37	133 Cs Caesium 55	Francium 87	*58-71 L;

www.papaCambridge.com Thulium Mo 69 Erbium Fn 89 Es The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). Californium 98 ರ Terbium ਲ **Currium** Am Samarium 62 Plutonium Pu å Neodymium 60 Praseodymium 6 Ра 232 **7** Thorium Cerium 28 90 b = proton (atomic) number a = relative atomic mass

X = atomic symbol

Key

7

2

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.